NMR-based serum metabolomics in patients with low-differentiated serous ovarian cancer.

Mateusz M Klimek, Agnieszka Skorupa, Mateusz Ciszek, Tomasz Cichon, Bartosz Cichon, Lukasz Boguszewicz, Andrzej Witek, Maria Sokol
{"title":"NMR-based serum metabolomics in patients with low-differentiated serous ovarian cancer.","authors":"Mateusz M Klimek, Agnieszka Skorupa, Mateusz Ciszek, Tomasz Cichon, Bartosz Cichon, Lukasz Boguszewicz, Andrzej Witek, Maria Sokol","doi":"10.5603/gpl.101741","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>In this pilot study the proton Nuclear Magnetic Resonance (¹H NMR)-based metabolomics was applied to explore the serum metabolomes of the patients with high-grade serous ovarian carcinoma (HGSOC) and the patients with benign gynaecological disease and to identify the characteristic biomarkers.</p><p><strong>Material and methods: </strong>We analyzed serum samples from 17 HGSOC patients and 14 control patients with benign gynecological conditions. Serum metabolites were profiled using 1H NMR spectroscopy, and multivariate data analyses, including Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA), were performed to identify discriminating metabolites.</p><p><strong>Results: </strong>The multivariate analysis revealed the lower levels of the lipid compounds, choline, branched-chain amino acids, 3-hydroxybutyrate (3HB), acetoacetate, and the higher level of lactate in the sera of the HGSOC patients compared to the control group.</p><p><strong>Conclusions: </strong>NMR-based metabolomic analysis can serve as a supporting method for the detection of ovarian cancer and may be useful as an adjunct to molecular diagnostics.</p>","PeriodicalId":94021,"journal":{"name":"Ginekologia polska","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ginekologia polska","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5603/gpl.101741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: In this pilot study the proton Nuclear Magnetic Resonance (¹H NMR)-based metabolomics was applied to explore the serum metabolomes of the patients with high-grade serous ovarian carcinoma (HGSOC) and the patients with benign gynaecological disease and to identify the characteristic biomarkers.

Material and methods: We analyzed serum samples from 17 HGSOC patients and 14 control patients with benign gynecological conditions. Serum metabolites were profiled using 1H NMR spectroscopy, and multivariate data analyses, including Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA), were performed to identify discriminating metabolites.

Results: The multivariate analysis revealed the lower levels of the lipid compounds, choline, branched-chain amino acids, 3-hydroxybutyrate (3HB), acetoacetate, and the higher level of lactate in the sera of the HGSOC patients compared to the control group.

Conclusions: NMR-based metabolomic analysis can serve as a supporting method for the detection of ovarian cancer and may be useful as an adjunct to molecular diagnostics.

基于核磁共振的低分化浆液性卵巢癌患者血清代谢组学研究。
目的:应用质子核磁共振(¹H NMR)为基础的代谢组学方法,探讨高级别浆液性卵巢癌(HGSOC)患者和妇科良性疾病患者的血清代谢组学特征,并鉴定其特征生物标志物。材料和方法:我们分析了17例HGSOC患者和14例良性妇科疾病对照患者的血清样本。使用1H NMR谱分析血清代谢物,并进行多变量数据分析,包括正交偏最小二乘判别分析(OPLS-DA),以确定判别代谢物。结果:多因素分析显示,与对照组相比,HGSOC患者血清中脂类化合物、胆碱、支链氨基酸、3-羟基丁酸(3HB)、乙酰乙酸水平较低,乳酸水平较高。结论:基于核磁共振的代谢组学分析可作为卵巢癌检测的辅助方法,并可作为分子诊断的辅助手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信