Livia Pagano, Awa Diop, Valeria Pennacchietti, Mariana Di Felice, Eduarda S Ventura, Julian Toso, Angelo Toto, Stefano Gianni
{"title":"A single buried cysteine acts as a hydrophobic stabilizer of a folding intermediate and transition state in the MATH domain of SPOP.","authors":"Livia Pagano, Awa Diop, Valeria Pennacchietti, Mariana Di Felice, Eduarda S Ventura, Julian Toso, Angelo Toto, Stefano Gianni","doi":"10.1002/pro.70138","DOIUrl":null,"url":null,"abstract":"<p><p>Cysteine is a highly conserved amino acid with diverse roles in protein function. Whilst its role in the formation of disulfide bridges is well characterized, the contribution of isolated cysteines in protein folding is by and large unexplored. Here we investigate the impact of cysteine residues on the folding pathway of the MATH domain in the SPOP protein by comparing wild-type and serine mutants. Through kinetic analyses, we demonstrate that a buried cysteine residue stabilizes both an early folding intermediate and the main transition state. Most notably, such effects are disrupted upon substitution with serine but preserved with alanine. These findings suggest that, in certain structural contexts, cysteine behaves as a hydrophobic rather than a polar residue. Our results challenge the traditional classification of cysteine as a polar amino acid and highlight its unique contributions to protein folding, with implications for protein engineering and structural biology.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 6","pages":"e70138"},"PeriodicalIF":5.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12076002/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70138","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cysteine is a highly conserved amino acid with diverse roles in protein function. Whilst its role in the formation of disulfide bridges is well characterized, the contribution of isolated cysteines in protein folding is by and large unexplored. Here we investigate the impact of cysteine residues on the folding pathway of the MATH domain in the SPOP protein by comparing wild-type and serine mutants. Through kinetic analyses, we demonstrate that a buried cysteine residue stabilizes both an early folding intermediate and the main transition state. Most notably, such effects are disrupted upon substitution with serine but preserved with alanine. These findings suggest that, in certain structural contexts, cysteine behaves as a hydrophobic rather than a polar residue. Our results challenge the traditional classification of cysteine as a polar amino acid and highlight its unique contributions to protein folding, with implications for protein engineering and structural biology.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).