Elizabeth L. Lewis-Michl, Steven P. Forand, Wan-Hsiang Hsu, Sanghamitra S. Savadatti, Ming Liu, June Moore, Qian Wu, Elizabeth J. Mullin, Kenneth M. Aldous
{"title":"Perfluorooctanoic acid serum concentrations and half-lives in a community exposed to contaminated drinking water in New York State","authors":"Elizabeth L. Lewis-Michl, Steven P. Forand, Wan-Hsiang Hsu, Sanghamitra S. Savadatti, Ming Liu, June Moore, Qian Wu, Elizabeth J. Mullin, Kenneth M. Aldous","doi":"10.1038/s41370-025-00769-z","DOIUrl":null,"url":null,"abstract":"Investigations during 2014–2016 in two communities in New York State showed perfluorooctanoic acid (PFOA) in a public system serving 3800 residents (Hoosick Falls) averaging 534 ppt and in a smaller system serving 200 residents (Petersburgh) averaging 92.5 ppt. Bottled water (2015–2016) was provided until filtration brought PFOA levels to non-detectable (2016–2017). The New York State Department of Health (NYSDOH) sought to address community questions about exposures and evaluate reductions in serum concentrations. NYSDOH tested serum PFOA in 2016 just after drinking water exposure mitigation and again in 2018. Descriptive statistics for serum PFOA by sex, age, length of residence, and water consumption were evaluated using multiple regression, and half-lives were estimated. Using the serum PFOA GM and median for tests occurring within 3 months of exposure mitigation (N = 1121) (47.5, 54.2) produced serum to water ratios of 89.0 and 101.6. A total of 1573 Hoosick Falls public water consumers (337","PeriodicalId":15684,"journal":{"name":"Journal of Exposure Science and Environmental Epidemiology","volume":"35 3","pages":"403-413"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069094/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Exposure Science and Environmental Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41370-025-00769-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Investigations during 2014–2016 in two communities in New York State showed perfluorooctanoic acid (PFOA) in a public system serving 3800 residents (Hoosick Falls) averaging 534 ppt and in a smaller system serving 200 residents (Petersburgh) averaging 92.5 ppt. Bottled water (2015–2016) was provided until filtration brought PFOA levels to non-detectable (2016–2017). The New York State Department of Health (NYSDOH) sought to address community questions about exposures and evaluate reductions in serum concentrations. NYSDOH tested serum PFOA in 2016 just after drinking water exposure mitigation and again in 2018. Descriptive statistics for serum PFOA by sex, age, length of residence, and water consumption were evaluated using multiple regression, and half-lives were estimated. Using the serum PFOA GM and median for tests occurring within 3 months of exposure mitigation (N = 1121) (47.5, 54.2) produced serum to water ratios of 89.0 and 101.6. A total of 1573 Hoosick Falls public water consumers (337
期刊介绍:
Journal of Exposure Science and Environmental Epidemiology (JESEE) aims to be the premier and authoritative source of information on advances in exposure science for professionals in a wide range of environmental and public health disciplines.
JESEE publishes original peer-reviewed research presenting significant advances in exposure science and exposure analysis, including development and application of the latest technologies for measuring exposures, and innovative computational approaches for translating novel data streams to characterize and predict exposures. The types of papers published in the research section of JESEE are original research articles, translation studies, and correspondence. Reported results should further understanding of the relationship between environmental exposure and human health, describe evaluated novel exposure science tools, or demonstrate potential of exposure science to enable decisions and actions that promote and protect human health.