Juan Carlos Nunez-Rodriguez, Miquel Àngel Schikora-Tamarit, Ewa Ksiezopolska, Toni Gabaldón
{"title":"Simple large-scale quantitative phenotyping and antimicrobial susceptibility testing with Q-PHAST.","authors":"Juan Carlos Nunez-Rodriguez, Miquel Àngel Schikora-Tamarit, Ewa Ksiezopolska, Toni Gabaldón","doi":"10.1038/s41596-025-01179-z","DOIUrl":null,"url":null,"abstract":"<p><p>The characterization of antimicrobial susceptibility and other relevant phenotypes in large collections of microbial isolates is a common need across research and clinical microbiology laboratories. Robotization provides unprecedented throughput but involves costs that are prohibitive for the average laboratory. Here, using affordable materials and open-source software, we developed Q-PHAST (Quantitative PHenotyping and Antimicrobial Susceptibility Testing), a unique solution for cost-effective, large-scale phenotyping in a standard microbiology laboratory. Single colonies are grown in a deep 96-well master plate, from which diluted aliquots are used to generate 96 spots on different experimental plates containing solid medium with the substance and concentration of interest. These plates are incubated on inexpensive flatbed scanners that monitor the growth of each spot by obtaining images every 15 min. A simple, python-based software, which can be used via a graphical interface on various operating systems ( https://github.com/Gabaldonlab/Q-PHAST ), analyzes the images to infer growth, fitness (e.g., doubling rate) and susceptibility (e.g., minimum inhibitory concentration) measures. With <120 min of hands-on time per day for three consecutive days, ready-to-use results are obtained and presented in tables or graphs. This solution enables non-experts with limited resources to perform accurate quantitative phenotyping on hundreds of strains in parallel.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01179-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The characterization of antimicrobial susceptibility and other relevant phenotypes in large collections of microbial isolates is a common need across research and clinical microbiology laboratories. Robotization provides unprecedented throughput but involves costs that are prohibitive for the average laboratory. Here, using affordable materials and open-source software, we developed Q-PHAST (Quantitative PHenotyping and Antimicrobial Susceptibility Testing), a unique solution for cost-effective, large-scale phenotyping in a standard microbiology laboratory. Single colonies are grown in a deep 96-well master plate, from which diluted aliquots are used to generate 96 spots on different experimental plates containing solid medium with the substance and concentration of interest. These plates are incubated on inexpensive flatbed scanners that monitor the growth of each spot by obtaining images every 15 min. A simple, python-based software, which can be used via a graphical interface on various operating systems ( https://github.com/Gabaldonlab/Q-PHAST ), analyzes the images to infer growth, fitness (e.g., doubling rate) and susceptibility (e.g., minimum inhibitory concentration) measures. With <120 min of hands-on time per day for three consecutive days, ready-to-use results are obtained and presented in tables or graphs. This solution enables non-experts with limited resources to perform accurate quantitative phenotyping on hundreds of strains in parallel.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.