{"title":"An in situ engineered chimeric IL-2 receptor potentiates the tumoricidal activity of proinflammatory CAR macrophages in renal cell carcinoma.","authors":"Weiqiang Jing, Maosen Han, Ganyu Wang, Zhichao Kong, Xiaotian Zhao, Zhipeng Fu, Xuewen Jiang, Chongdeng Shi, Chen Chen, Jing Zhang, Zuolin Zheng, Jinxin Gao, Weiyi Sun, Chunwei Tang, Zhenmei Yang, Yan Wang, Ying Liu, Kun Zhao, Danqing Zhu, Benkang Shi, Xinyi Jiang","doi":"10.1038/s43018-025-00950-1","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric antigen receptor macrophage (CAR-M) therapy has shown great promise in solid malignancies; however, the phenotypic re-domestication of CAR-Ms in the immunosuppressive tumor niche restricts their antitumor immunity. We here report an in situ engineered chimeric interleukin (IL)-2 signaling receptor (CSR) for controllably manipulating the proinflammatory phenotype of CAR-Ms, augmenting their sustained tumoricidal immunity. Specifically, our in-house-customized lipid nanoparticles efficiently introduce dual circular RNAs into macrophages to generate CSR-functionalized CAR-Ms. The intracellular inflammatory signaling pathway of CAR-Ms can be stimulated with the IL-2 therapeutic via the synthetic IL-2 receptor, which induces the antitumor phenotype shifting of CAR-Ms. Moreover, hydrogel-mediated combinatory treatment with lipid nanoparticles and IL-2 remodels the immunosuppressive tumor microenvironment and promotes tumor regression in renal carcinoma animal models. In summary, our findings establish that the proinflammatory phenotype of CAR-Ms can be modulated by a synthetic IL-2 receptor, benefiting the antitumor immunotherapy of CAR-Ms with broad application in other solid malignancies.</p>","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":" ","pages":"838-853"},"PeriodicalIF":23.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s43018-025-00950-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chimeric antigen receptor macrophage (CAR-M) therapy has shown great promise in solid malignancies; however, the phenotypic re-domestication of CAR-Ms in the immunosuppressive tumor niche restricts their antitumor immunity. We here report an in situ engineered chimeric interleukin (IL)-2 signaling receptor (CSR) for controllably manipulating the proinflammatory phenotype of CAR-Ms, augmenting their sustained tumoricidal immunity. Specifically, our in-house-customized lipid nanoparticles efficiently introduce dual circular RNAs into macrophages to generate CSR-functionalized CAR-Ms. The intracellular inflammatory signaling pathway of CAR-Ms can be stimulated with the IL-2 therapeutic via the synthetic IL-2 receptor, which induces the antitumor phenotype shifting of CAR-Ms. Moreover, hydrogel-mediated combinatory treatment with lipid nanoparticles and IL-2 remodels the immunosuppressive tumor microenvironment and promotes tumor regression in renal carcinoma animal models. In summary, our findings establish that the proinflammatory phenotype of CAR-Ms can be modulated by a synthetic IL-2 receptor, benefiting the antitumor immunotherapy of CAR-Ms with broad application in other solid malignancies.
期刊介绍:
Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates.
Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale.
In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.