Rebecca M Booth, Amanda Jons, Xue Gong, Shounak Banerjee, Britt Faulk, Hays Rye, Christopher Bystroff, Sarah E Bondos
{"title":"Immobilization and enhancement of a heterodimeric fluorescence biosensor in fibrous protein biomaterials.","authors":"Rebecca M Booth, Amanda Jons, Xue Gong, Shounak Banerjee, Britt Faulk, Hays Rye, Christopher Bystroff, Sarah E Bondos","doi":"10.1002/pro.70119","DOIUrl":null,"url":null,"abstract":"<p><p>Leave-one-out green fluorescent proteins (LOO_GFPs) have a reduced quantum yield relative to the parent protein and form fluorescent oligomers in the unbound state. Immobilizing LOO_GFPs in materials composed of the Drosophila protein Ultrabithorax (Ubx) via gene fusion increased the fluorescent signal, significantly stabilized the biosensor, and prevented oligomerization into fluorescent aggregates, which has the potential to elevate the sensor's noise well above the signal. Interactions between LOO_GFP and Ubx hampered analyte rebinding. By optimizing the concentrations of LOO_GFP, salt, and detergent in the assay, the signal to noise ratio for the biosensor increased fourfold. These modified fibers represent the first incorporation of a protein complementation assay into protein-based materials, as well as the first incorporation, via gene fusion, of a heterodimeric functional protein into materials composed of a different self-assembling protein. This study highlights the advantages and identifies potential pitfalls associated with protein immobilization in materials.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 5","pages":"e70119"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012991/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70119","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Leave-one-out green fluorescent proteins (LOO_GFPs) have a reduced quantum yield relative to the parent protein and form fluorescent oligomers in the unbound state. Immobilizing LOO_GFPs in materials composed of the Drosophila protein Ultrabithorax (Ubx) via gene fusion increased the fluorescent signal, significantly stabilized the biosensor, and prevented oligomerization into fluorescent aggregates, which has the potential to elevate the sensor's noise well above the signal. Interactions between LOO_GFP and Ubx hampered analyte rebinding. By optimizing the concentrations of LOO_GFP, salt, and detergent in the assay, the signal to noise ratio for the biosensor increased fourfold. These modified fibers represent the first incorporation of a protein complementation assay into protein-based materials, as well as the first incorporation, via gene fusion, of a heterodimeric functional protein into materials composed of a different self-assembling protein. This study highlights the advantages and identifies potential pitfalls associated with protein immobilization in materials.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).