Muzhen Guan, Yuanjun Xie, Zhongheng Wang, Ye Miao, Xiaosa Li, Shoufen Yu, Hua-Ning Wang
{"title":"Brain connectivity and transcriptional changes induced by rTMS in first-episode major depressive disorder.","authors":"Muzhen Guan, Yuanjun Xie, Zhongheng Wang, Ye Miao, Xiaosa Li, Shoufen Yu, Hua-Ning Wang","doi":"10.1038/s41398-025-03376-6","DOIUrl":null,"url":null,"abstract":"<p><p>Repetitive transcranial magnetic stimulation (rTMS) is a widely utilized non-invasive brain stimulation technique with demonstrated efficacy in treating major depressive disorder (MDD). However, the mechanisms underlying its therapeutic effects, particularly in modulating neural connectivity and influencing gene expression, remain incompletely understood. In this study, we investigated the voxel-wise degree centrality (DC) induced by 10 Hz rTMS targeting the left dorsolateral prefrontal cortex, as well as their associations with transcriptomic data from the Allen Human Brain Atlas. The results indicated that the active treatment significantly reduced clinical symptoms and increased DC in the left superior medial frontal gyrus, left middle occipital gyrus, and right anterior cingulate cortex. Partial least squares regression analysis revealed that genes associated with DC alternations were enriched biological processes related to neural plasticity and synaptic connectivity. Furthermore, protein-protein interaction (PPI) analysis identified key hub genes, including SCN1A, SNAP25, and PVALB, whose expression levels were positively correlated with DC changes. Notably, SCN1A emerged as a significant predictor on DC changes. These findings suggest that rTMS may exert its therapeutic effects in MDD by modulating specific molecular pathways and neural networks, providing valuable insights into its mechanisms of action.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"159"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12022310/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03376-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a widely utilized non-invasive brain stimulation technique with demonstrated efficacy in treating major depressive disorder (MDD). However, the mechanisms underlying its therapeutic effects, particularly in modulating neural connectivity and influencing gene expression, remain incompletely understood. In this study, we investigated the voxel-wise degree centrality (DC) induced by 10 Hz rTMS targeting the left dorsolateral prefrontal cortex, as well as their associations with transcriptomic data from the Allen Human Brain Atlas. The results indicated that the active treatment significantly reduced clinical symptoms and increased DC in the left superior medial frontal gyrus, left middle occipital gyrus, and right anterior cingulate cortex. Partial least squares regression analysis revealed that genes associated with DC alternations were enriched biological processes related to neural plasticity and synaptic connectivity. Furthermore, protein-protein interaction (PPI) analysis identified key hub genes, including SCN1A, SNAP25, and PVALB, whose expression levels were positively correlated with DC changes. Notably, SCN1A emerged as a significant predictor on DC changes. These findings suggest that rTMS may exert its therapeutic effects in MDD by modulating specific molecular pathways and neural networks, providing valuable insights into its mechanisms of action.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.