Mechanosensitive Channels Mediate Pancreatic β Cells Reactive Oxygen Species Formation and Downregulation of Essential Genes During Therapeutic Ultrasound Treatment.
{"title":"Mechanosensitive Channels Mediate Pancreatic β Cells Reactive Oxygen Species Formation and Downregulation of Essential Genes During Therapeutic Ultrasound Treatment.","authors":"Mallory Brayer, Vesna Zderic, Aleksandar Jeremic","doi":"10.1002/jum.16712","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Type 2 diabetes is partially caused by insufficient pancreatic β cell insulin secretion. Previous studies show therapeutic ultrasound (TUS) evokes insulin secretion from β cells as a potential treatment for type 2 diabetes; however, how β cells sense TUS and the broad effects of this treatment on cells remain unknown. Here, we identified mechanosensitive channels (MSC) expressed by β cells and TUS-mediated gene downregulation and reactive oxygen species (ROS) formation.</p><p><strong>Methods: </strong>For all experiments, 1 W/cm<sup>2</sup> intensity and 800 kHz frequency TUS were continuously applied for 5 minutes with a 100% duty cycle. RNA and protein isolation of human pancreatic islets and the rat insulinoma INS 832/13 cell line were used for rtqPCR and western blot, respectively, to determine MSC expression. INS cells treated with MSC agonists and/or antagonists during TUS were visualized via fluorescent microscopy to track ROS formation. Using the same treatments, rtPCR analysis of INS insulin and IAPP encoding insulin and islet amyloid polypeptide (IAPP), respectively, was performed. TUS treatments were replicated in rats from which pancreatic sections were collected for immunohistochemistry analysis.</p><p><strong>Results: </strong>We found the expression of TRPV2, TRPV5, and piezo1 in human islets and INS cells. TUS increased ROS formation in INS cells compared to sham-treated controls (P < .0001); however, modulation of MSC mitigated this effect (P < .001). TUS decreased the expression of the genes insulin and IAPP in INS cells compared to sham-treated controls (P < .001 and P < .01, respectively); however, complete MSC inhibition reversed this effect (P < .01 and P < .05, respectively). In our rat model, pancreatic and duodenal homeobox 1 (PDX1) expression was decreased by TUS compared to sham-treated controls (*P < .05); however, TUS did not decrease insulin or IAPP levels (P > .05).</p><p><strong>Conclusion: </strong>We report the expression of TRPV2, TRPV5, and piezo1 in human and rodent pancreatic β cells that are implicated in both TUS-mediated ROS formation and the downregulation of essential β cell genes.</p>","PeriodicalId":17563,"journal":{"name":"Journal of Ultrasound in Medicine","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ultrasound in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jum.16712","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Type 2 diabetes is partially caused by insufficient pancreatic β cell insulin secretion. Previous studies show therapeutic ultrasound (TUS) evokes insulin secretion from β cells as a potential treatment for type 2 diabetes; however, how β cells sense TUS and the broad effects of this treatment on cells remain unknown. Here, we identified mechanosensitive channels (MSC) expressed by β cells and TUS-mediated gene downregulation and reactive oxygen species (ROS) formation.
Methods: For all experiments, 1 W/cm2 intensity and 800 kHz frequency TUS were continuously applied for 5 minutes with a 100% duty cycle. RNA and protein isolation of human pancreatic islets and the rat insulinoma INS 832/13 cell line were used for rtqPCR and western blot, respectively, to determine MSC expression. INS cells treated with MSC agonists and/or antagonists during TUS were visualized via fluorescent microscopy to track ROS formation. Using the same treatments, rtPCR analysis of INS insulin and IAPP encoding insulin and islet amyloid polypeptide (IAPP), respectively, was performed. TUS treatments were replicated in rats from which pancreatic sections were collected for immunohistochemistry analysis.
Results: We found the expression of TRPV2, TRPV5, and piezo1 in human islets and INS cells. TUS increased ROS formation in INS cells compared to sham-treated controls (P < .0001); however, modulation of MSC mitigated this effect (P < .001). TUS decreased the expression of the genes insulin and IAPP in INS cells compared to sham-treated controls (P < .001 and P < .01, respectively); however, complete MSC inhibition reversed this effect (P < .01 and P < .05, respectively). In our rat model, pancreatic and duodenal homeobox 1 (PDX1) expression was decreased by TUS compared to sham-treated controls (*P < .05); however, TUS did not decrease insulin or IAPP levels (P > .05).
Conclusion: We report the expression of TRPV2, TRPV5, and piezo1 in human and rodent pancreatic β cells that are implicated in both TUS-mediated ROS formation and the downregulation of essential β cell genes.
期刊介绍:
The Journal of Ultrasound in Medicine (JUM) is dedicated to the rapid, accurate publication of original articles dealing with all aspects of medical ultrasound, particularly its direct application to patient care but also relevant basic science, advances in instrumentation, and biological effects. The journal is an official publication of the American Institute of Ultrasound in Medicine and publishes articles in a variety of categories, including Original Research papers, Review Articles, Pictorial Essays, Technical Innovations, Case Series, Letters to the Editor, and more, from an international bevy of countries in a continual effort to showcase and promote advances in the ultrasound community.
Represented through these efforts are a wide variety of disciplines of ultrasound, including, but not limited to:
-Basic Science-
Breast Ultrasound-
Contrast-Enhanced Ultrasound-
Dermatology-
Echocardiography-
Elastography-
Emergency Medicine-
Fetal Echocardiography-
Gastrointestinal Ultrasound-
General and Abdominal Ultrasound-
Genitourinary Ultrasound-
Gynecologic Ultrasound-
Head and Neck Ultrasound-
High Frequency Clinical and Preclinical Imaging-
Interventional-Intraoperative Ultrasound-
Musculoskeletal Ultrasound-
Neurosonology-
Obstetric Ultrasound-
Ophthalmologic Ultrasound-
Pediatric Ultrasound-
Point-of-Care Ultrasound-
Public Policy-
Superficial Structures-
Therapeutic Ultrasound-
Ultrasound Education-
Ultrasound in Global Health-
Urologic Ultrasound-
Vascular Ultrasound