{"title":"Distinct regulation of mRNA decay pathways by ABA enhances Nitrate Reductase 1/2-derived siRNAs production and stress adaptation.","authors":"Yan Yan, Yinpeng Xie, Qian Gao, Yajie Pan, Xianli Tang, Yuelin Liu, Wenyang Li, Hongwei Guo","doi":"10.1016/j.molp.2025.04.007","DOIUrl":null,"url":null,"abstract":"<p><p>RNA degradation systems (e.g., RNA decay and RNA interference) and the phytohormone abscisic acid (ABA) are both essential for plant growth, development, and adaptation to stress. Although the interplay between these pathways has been recognized, the molecular mechanisms governing their coordination remain poorly understood. In this study, we revealed that mutations in the 5'-3' RNA-degrading enzyme Ethylene Insensitive 5 (EIN5) result in hypersensitivity to ABA in Arabidopsis, whereas defects in the 3'-5' RNA turnover machinery (ski mutants) do not. The ABA hypersensitivity of ein5 mutants was mitigated by mutating components of the post-transcriptional gene silencing (PTGS) pathway, including DICER-LIKE 2 (DCL2)/DCL4, RNA-Dependent RNA Polymerase 1 (RDR1)/RDR6, and ARGONAUTE 1 (AGO1). ABA treatment substantially increased the abundance of coding-transcript-derived small interfering RNAs (ct-siRNAs) in ein5, predominantly from two genes, Nitrate Reductase 1 (NIA1) and NIA2. Further analysis suggested that NIA1 and NIA2 negatively regulate both the ABA biosynthesis and signaling pathways. The key transcription factor Abscisic Acid Insensitive 3 (ABI3) represses SKI3 expression by directly binding to its promoter, thereby promoting the production of NIA1/NIA2-derived ct-siRNAs, leading to the ABA hypersensitivity of ein5. Conversely, ABA enhances the accumulation of EIN5 as well as DCL4 and AGO1, pointing to distinct regulation of the mRNA decay and PTGS pathways. Collectively, these findings demonstrate the pivotal roles of NIA1 and NIA2 in plant responses to abiotic stress and provide new insights into the interplay between the ABA response and RNA degradation pathways.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"18 5","pages":"853-871"},"PeriodicalIF":17.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2025.04.007","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
RNA degradation systems (e.g., RNA decay and RNA interference) and the phytohormone abscisic acid (ABA) are both essential for plant growth, development, and adaptation to stress. Although the interplay between these pathways has been recognized, the molecular mechanisms governing their coordination remain poorly understood. In this study, we revealed that mutations in the 5'-3' RNA-degrading enzyme Ethylene Insensitive 5 (EIN5) result in hypersensitivity to ABA in Arabidopsis, whereas defects in the 3'-5' RNA turnover machinery (ski mutants) do not. The ABA hypersensitivity of ein5 mutants was mitigated by mutating components of the post-transcriptional gene silencing (PTGS) pathway, including DICER-LIKE 2 (DCL2)/DCL4, RNA-Dependent RNA Polymerase 1 (RDR1)/RDR6, and ARGONAUTE 1 (AGO1). ABA treatment substantially increased the abundance of coding-transcript-derived small interfering RNAs (ct-siRNAs) in ein5, predominantly from two genes, Nitrate Reductase 1 (NIA1) and NIA2. Further analysis suggested that NIA1 and NIA2 negatively regulate both the ABA biosynthesis and signaling pathways. The key transcription factor Abscisic Acid Insensitive 3 (ABI3) represses SKI3 expression by directly binding to its promoter, thereby promoting the production of NIA1/NIA2-derived ct-siRNAs, leading to the ABA hypersensitivity of ein5. Conversely, ABA enhances the accumulation of EIN5 as well as DCL4 and AGO1, pointing to distinct regulation of the mRNA decay and PTGS pathways. Collectively, these findings demonstrate the pivotal roles of NIA1 and NIA2 in plant responses to abiotic stress and provide new insights into the interplay between the ABA response and RNA degradation pathways.
期刊介绍:
Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution.
Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.