Davide Visintainer, Nanna Fjord Sørensen, Mengming Chen, Mai Duy Luu Trinh, Rute R da Fonseca, Sara Fondevilla, Rosa L López-Marqués
{"title":"Root restriction accelerates genomic target identification in quinoa under controlled conditions.","authors":"Davide Visintainer, Nanna Fjord Sørensen, Mengming Chen, Mai Duy Luu Trinh, Rute R da Fonseca, Sara Fondevilla, Rosa L López-Marqués","doi":"10.1111/ppl.70223","DOIUrl":null,"url":null,"abstract":"<p><p>Quinoa (Chenopodium quinoa) is a nutritious and resilient crop that displays a high genetic and phenotypic variation. As the popularity of this crop increases, there is a growing need to integrate classic and modern breeding tools to favor its improvement. We tested root restriction as a method to reduce plant size and enable high-throughput phenotypic screening of large sets of quinoa plants under controlled conditions. We verified how increasing root restriction does not affect the prediction of field behavior with respect to other standard greenhouse cultivation procedures. We then combined the phenotypic information obtained with our root restriction system with whole-genome re-sequencing data to characterize a quinoa diversity panel of 100 accessions and showed that phenotypic data obtained from root-restricted plants provide real insights into quinoa genetics. Finally, we carried out a genome-wide association study (GWAS) and identified a previously described locus for betalain biosynthesis, as well as other candidate loci linked to betalain biosynthesis and seed size. Overall, we showed that a phenotyping system based on root restriction can aid the identification of genomic targets in quinoa, which can complement and inform field trials for certain traits. This work supports further breeding and faster improvement of quinoa.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70223"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11998636/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70223","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Quinoa (Chenopodium quinoa) is a nutritious and resilient crop that displays a high genetic and phenotypic variation. As the popularity of this crop increases, there is a growing need to integrate classic and modern breeding tools to favor its improvement. We tested root restriction as a method to reduce plant size and enable high-throughput phenotypic screening of large sets of quinoa plants under controlled conditions. We verified how increasing root restriction does not affect the prediction of field behavior with respect to other standard greenhouse cultivation procedures. We then combined the phenotypic information obtained with our root restriction system with whole-genome re-sequencing data to characterize a quinoa diversity panel of 100 accessions and showed that phenotypic data obtained from root-restricted plants provide real insights into quinoa genetics. Finally, we carried out a genome-wide association study (GWAS) and identified a previously described locus for betalain biosynthesis, as well as other candidate loci linked to betalain biosynthesis and seed size. Overall, we showed that a phenotyping system based on root restriction can aid the identification of genomic targets in quinoa, which can complement and inform field trials for certain traits. This work supports further breeding and faster improvement of quinoa.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.