Photocurable Crosslinker from Bio-Based Non-Isocyanate Poly(hydroxyurethane) for Biocompatible Hydrogels.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-05-07 DOI:10.3390/polym17091285
Kathleen Hennig, Gabriele Vacun, Sibylle Thude, Wolfdietrich Meyer
{"title":"Photocurable Crosslinker from Bio-Based Non-Isocyanate Poly(hydroxyurethane) for Biocompatible Hydrogels.","authors":"Kathleen Hennig, Gabriele Vacun, Sibylle Thude, Wolfdietrich Meyer","doi":"10.3390/polym17091285","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the synthesis of photocurable non-isocyanate polyhydroxyethylurethanes (BPHUs) derived from renewable sources, designed for biomedical applications and the development towards advanced light curing processes. The following two pathways were developed: an aliphatic route using 1,4-butanediol-derived cyclic carbonates and an aromatic route with resorcinol-based carbonates. Ring-opening polymerization with dodecanediamine produced BPHU intermediates, which were methacrylated to form photoreactive derivatives (aliphatic MAs and aromatic MAs). Comprehensive characterization, including NMR, GPC, and FTIR, confirmed the successful synthesis. The UV curing of these methacrylated compounds yielded hydrogels with swelling properties. Aliphatic BPHUs achieved a gel content of 91.3% and a swelling of 1057%, demonstrating the flexibility and UV stability suitable for adaptable biomedical applications. Conversely, aromatic BPHUs displayed a gel content of 78.1% and a swelling of 3304%, indicating higher rigidity, which is advantageous for load-bearing uses. Cytotoxicity assessments adhering to the DIN EN ISO 10993-5 standard demonstrated non-cytotoxicity, with an >80% cell viability for both variants. This research underscores the potential of green chemistry in crafting biocompatible, versatile BPHUs, paving the way for eco-friendly materials in implantable medical devices.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 9","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073706/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17091285","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the synthesis of photocurable non-isocyanate polyhydroxyethylurethanes (BPHUs) derived from renewable sources, designed for biomedical applications and the development towards advanced light curing processes. The following two pathways were developed: an aliphatic route using 1,4-butanediol-derived cyclic carbonates and an aromatic route with resorcinol-based carbonates. Ring-opening polymerization with dodecanediamine produced BPHU intermediates, which were methacrylated to form photoreactive derivatives (aliphatic MAs and aromatic MAs). Comprehensive characterization, including NMR, GPC, and FTIR, confirmed the successful synthesis. The UV curing of these methacrylated compounds yielded hydrogels with swelling properties. Aliphatic BPHUs achieved a gel content of 91.3% and a swelling of 1057%, demonstrating the flexibility and UV stability suitable for adaptable biomedical applications. Conversely, aromatic BPHUs displayed a gel content of 78.1% and a swelling of 3304%, indicating higher rigidity, which is advantageous for load-bearing uses. Cytotoxicity assessments adhering to the DIN EN ISO 10993-5 standard demonstrated non-cytotoxicity, with an >80% cell viability for both variants. This research underscores the potential of green chemistry in crafting biocompatible, versatile BPHUs, paving the way for eco-friendly materials in implantable medical devices.

用于生物相容性水凝胶的生物基非异氰酸酯聚羟基聚氨酯光固化交联剂。
本研究探索了可再生资源光固化非异氰酸酯聚羟乙基lurethane (BPHUs)的合成,用于生物医学应用和先进光固化工艺的发展。开发了以下两种途径:使用1,4-丁二醇衍生的环状碳酸盐的脂肪途径和使用间苯二酚基碳酸盐的芳香途径。与十二烷二胺开环聚合产生BPHU中间体,这些中间体被甲基丙烯酸化形成光反应衍生物(脂肪族MAs和芳香MAs)。综合表征,包括NMR, GPC和FTIR,证实了成功的合成。这些甲基丙烯酸化合物的紫外线固化产生具有膨胀特性的水凝胶。脂肪族BPHUs的凝胶含量为91.3%,溶胀率为1057%,显示出适合生物医学应用的灵活性和紫外线稳定性。相反,芳香族BPHUs的凝胶含量为78.1%,膨胀率为3304%,表明其刚性较高,有利于承重。根据DIN EN ISO 10993-5标准进行的细胞毒性评估显示无细胞毒性,两种变体的细胞存活率均为80%左右。这项研究强调了绿色化学在制造生物相容性、多功能bphu方面的潜力,为植入式医疗设备中的环保材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信