Jie Yan, Qian Li, Deying Geng, Zheng Wang, Dongmei Zhao, Dai Zhang, Jinhui Wang, Yang Pan, Jiehua Zhu, Zhihui Yang
{"title":"The Potato StNAC2-StSABP2 Module Enhanced Resistance to Phytophthora infestans Through Activating the Salicylic Acid Pathway.","authors":"Jie Yan, Qian Li, Deying Geng, Zheng Wang, Dongmei Zhao, Dai Zhang, Jinhui Wang, Yang Pan, Jiehua Zhu, Zhihui Yang","doi":"10.1111/mpp.70081","DOIUrl":null,"url":null,"abstract":"<p><p>Potato late blight is an important disease in potato production, which causes serious damage. Salicylic acid (SA) is a plant hormone involved in the regulation of potato (Solanum tuberosum) resistance to Phytophthora infestans. In this study, it was found that exogenous methyl salicylate (MeSA) treatment could significantly enhance the resistance of potato to P. infestans. RNA-seq results confirmed that SA was important for potato resistance to P. infestans. Salicylic acid binding protein 2 (SABP2) is a member of α/β hydrolase family, which can convert MeSA into SA to regulate the steady state of SA in plants. StSABP2 protein was obtained through prokaryotic expression, and enzymatic analysis in vitro confirmed that StSABP2 could transform MeSA into SA. In order to explore the function of StSABP2 in the process of plant resistance to P. infestans, we carried out virus-mediated gene silencing of StSABP2 in potato and transiently expressed StSABP2 in tobacco. The results showed that StSABP2 positively regulated plant resistance to P. infestans, and this process was achieved by mediating the transcription of SA signal and defence-related genes. Then we screened for the upstream regulator of StSABP2. The results of double luciferase and yeast one-hybrid analysis showed that StNAC2 could activate the transcription of StSABP2. The StNAC2-StSABP2 module regulated potato resistance to P. infestans by positively mediating the SA pathway. This study provides a new idea for improving host resistance to potato late blight by regulating the SA signal in potato and provides germplasm resources for potato resistance breeding.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"26 5","pages":"e70081"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040442/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.70081","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Potato late blight is an important disease in potato production, which causes serious damage. Salicylic acid (SA) is a plant hormone involved in the regulation of potato (Solanum tuberosum) resistance to Phytophthora infestans. In this study, it was found that exogenous methyl salicylate (MeSA) treatment could significantly enhance the resistance of potato to P. infestans. RNA-seq results confirmed that SA was important for potato resistance to P. infestans. Salicylic acid binding protein 2 (SABP2) is a member of α/β hydrolase family, which can convert MeSA into SA to regulate the steady state of SA in plants. StSABP2 protein was obtained through prokaryotic expression, and enzymatic analysis in vitro confirmed that StSABP2 could transform MeSA into SA. In order to explore the function of StSABP2 in the process of plant resistance to P. infestans, we carried out virus-mediated gene silencing of StSABP2 in potato and transiently expressed StSABP2 in tobacco. The results showed that StSABP2 positively regulated plant resistance to P. infestans, and this process was achieved by mediating the transcription of SA signal and defence-related genes. Then we screened for the upstream regulator of StSABP2. The results of double luciferase and yeast one-hybrid analysis showed that StNAC2 could activate the transcription of StSABP2. The StNAC2-StSABP2 module regulated potato resistance to P. infestans by positively mediating the SA pathway. This study provides a new idea for improving host resistance to potato late blight by regulating the SA signal in potato and provides germplasm resources for potato resistance breeding.
期刊介绍:
Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.