{"title":"The Protective Effects of MSC-Derived Exosomes Against Chemotherapy-Induced Parotid Gland Cytotoxicity.","authors":"Mahmoud M Bakr, Mahmoud Al Ankily, Mohamed Shamel","doi":"10.1155/ijod/5517092","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Fluorouracil (5-FU) is one of the most popular chemotherapeutic agents used in various cancer therapy protocols. Cell-free therapy utilizing exosomes is gaining increased popularity as a safer option due to concerns over potential tumor progression following stem cell therapy. <b>Methods:</b> Parotid glands of albino were treated with a single bone marrow mesenchymal stem cell (BMMSC)-derived exosomes injection (100 μg/kg/dose suspended in 0.2 mL phosphate-buffered saline [PBS]), a single 5-Fu injection (20 mg/kg), and BMMSC-derived exosomes plus 5-FU and compared to control group (daily saline injections). After 30 days, the parotid glands were examined using qualitative histological evaluation, immunohistochemical evaluation using rabbit polyclonal mouse antibody to Ki-67, caspase 3, and <i>iNOS</i>, as well as quantitative real-time polymerase chain reaction (RT-PCR) to evaluate gene expression of <i>TGFβ1</i>, <i>TNF-α</i>, and <i>BCL-2</i>. <b>Results:</b> Histological examination of the parotid gland revealed that BMMSC-derived exosomes restored the glands' architecture and repaired most of the distortion created by 5-FU. Immunohistochemical expression of tumor proliferation and cell death markers were restored to normal levels in the exosome-treated groups that were similar to the control group. Furthermore, BMMSC-derived exosomes reversed the effects of 5-FU on quantitative gene expression levels and showed a significant decrease in <i>TNF-α</i> (<i>p</i> < 0.001) and a significant increase in <i>TGFβ</i> (<i>p</i> < 0.0001) and <i>BCL-2</i> (<i>p</i> < 0.05) when compared to 5-FU treatment. <b>Conclusion:</b> Within the limitations of the current study, BMMSC-derived exosomes have the potential to counteract the cytotoxic effects of 5-FU on the parotid glands of rats in vivo. Further studies are deemed necessary to simulate clinical scenarios.</p>","PeriodicalId":13947,"journal":{"name":"International Journal of Dentistry","volume":"2025 ","pages":"5517092"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986938/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Dentistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/ijod/5517092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Fluorouracil (5-FU) is one of the most popular chemotherapeutic agents used in various cancer therapy protocols. Cell-free therapy utilizing exosomes is gaining increased popularity as a safer option due to concerns over potential tumor progression following stem cell therapy. Methods: Parotid glands of albino were treated with a single bone marrow mesenchymal stem cell (BMMSC)-derived exosomes injection (100 μg/kg/dose suspended in 0.2 mL phosphate-buffered saline [PBS]), a single 5-Fu injection (20 mg/kg), and BMMSC-derived exosomes plus 5-FU and compared to control group (daily saline injections). After 30 days, the parotid glands were examined using qualitative histological evaluation, immunohistochemical evaluation using rabbit polyclonal mouse antibody to Ki-67, caspase 3, and iNOS, as well as quantitative real-time polymerase chain reaction (RT-PCR) to evaluate gene expression of TGFβ1, TNF-α, and BCL-2. Results: Histological examination of the parotid gland revealed that BMMSC-derived exosomes restored the glands' architecture and repaired most of the distortion created by 5-FU. Immunohistochemical expression of tumor proliferation and cell death markers were restored to normal levels in the exosome-treated groups that were similar to the control group. Furthermore, BMMSC-derived exosomes reversed the effects of 5-FU on quantitative gene expression levels and showed a significant decrease in TNF-α (p < 0.001) and a significant increase in TGFβ (p < 0.0001) and BCL-2 (p < 0.05) when compared to 5-FU treatment. Conclusion: Within the limitations of the current study, BMMSC-derived exosomes have the potential to counteract the cytotoxic effects of 5-FU on the parotid glands of rats in vivo. Further studies are deemed necessary to simulate clinical scenarios.