Coherence enhancement via a diamond-graphene hybrid for nanoscale quantum sensing.

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
National Science Review Pub Date : 2025-03-08 eCollection Date: 2025-05-01 DOI:10.1093/nsr/nwaf076
Yucheng Hao, Zhiping Yang, Zeyu Li, Xi Kong, Wenna Tang, Tianyu Xie, Shaoyi Xu, Xiangyu Ye, Pei Yu, Pengfei Wang, Ya Wang, Zhenhua Qiao, Libo Gao, Jian-Hua Jiang, Fazhan Shi, Jiangfeng Du
{"title":"Coherence enhancement via a diamond-graphene hybrid for nanoscale quantum sensing.","authors":"Yucheng Hao, Zhiping Yang, Zeyu Li, Xi Kong, Wenna Tang, Tianyu Xie, Shaoyi Xu, Xiangyu Ye, Pei Yu, Pengfei Wang, Ya Wang, Zhenhua Qiao, Libo Gao, Jian-Hua Jiang, Fazhan Shi, Jiangfeng Du","doi":"10.1093/nsr/nwaf076","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum coherence serves as a crucial quantum resource for achieving high-sensitivity quantum sensing. Because of its long coherence time at room temperature, the nitrogen-vacancy (NV) center has emerged as a quantum sensor in various fields in recent years. While nanoscale quantum sensing at room temperature has been demonstrated for NV centers, noise on the diamond surface severely limits its further development at a higher sensitivity. Here, we utilize the hybridization between graphene and diamond surfaces to directly deplete surface unpaired electron spins, thereby achieving roughly two-fold enhancement in coherence. Through the combination of electron spin resonance spectra and first-principle calculations, we explain that this phenomenon arises from a significant reduction in electron spin density on the diamond surface due to interface electron orbital hybridization. Our research presents a new approach for solid-state quantum sensors to reach the desired sensitivity level and offers a new pathway for future studies on material interfaces.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 5","pages":"nwaf076"},"PeriodicalIF":16.3000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12023861/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwaf076","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum coherence serves as a crucial quantum resource for achieving high-sensitivity quantum sensing. Because of its long coherence time at room temperature, the nitrogen-vacancy (NV) center has emerged as a quantum sensor in various fields in recent years. While nanoscale quantum sensing at room temperature has been demonstrated for NV centers, noise on the diamond surface severely limits its further development at a higher sensitivity. Here, we utilize the hybridization between graphene and diamond surfaces to directly deplete surface unpaired electron spins, thereby achieving roughly two-fold enhancement in coherence. Through the combination of electron spin resonance spectra and first-principle calculations, we explain that this phenomenon arises from a significant reduction in electron spin density on the diamond surface due to interface electron orbital hybridization. Our research presents a new approach for solid-state quantum sensors to reach the desired sensitivity level and offers a new pathway for future studies on material interfaces.

通过金刚石-石墨烯混合材料增强相干性的纳米级量子传感。
量子相干是实现高灵敏度量子传感的关键量子资源。氮空位(NV)中心由于具有较长的室温相干时间,近年来作为量子传感器应用于各个领域。虽然室温下的纳米级量子传感已经被证明用于NV中心,但金刚石表面的噪声严重限制了其在更高灵敏度下的进一步发展。在这里,我们利用石墨烯和金刚石表面之间的杂化直接消耗表面未成对的电子自旋,从而实现了相干性的大约两倍增强。通过结合电子自旋共振谱和第一性原理计算,我们解释了这种现象是由于界面电子轨道杂化导致金刚石表面电子自旋密度显著降低所致。我们的研究为固态量子传感器达到期望的灵敏度水平提供了一种新的途径,并为未来材料界面的研究提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信