Improving sustainable isopropanol production in engineered Escherichia coli W via oxygen limitation.

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Regina Kutscha, Dominic Uhlir, Stefan Pflügl
{"title":"Improving sustainable isopropanol production in engineered Escherichia coli W via oxygen limitation.","authors":"Regina Kutscha, Dominic Uhlir, Stefan Pflügl","doi":"10.1186/s12934-025-02720-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Due to ecological concerns, alternative supply lines for fuel and bulk chemicals such as isopropanol are increasingly pursued. By implementing the formation pathways from natural producers like Clostridium beijerinckii and Clostridium aurantibutyricum, isopropanol can be produced in Escherichia coli. However, developing an industrially and economically feasible microbial production process requires a robust and efficient process strategy. Therefore, this study explores microaerobic conditions in combination with lactose and sour whey as sustainable carbon source as a basis for large-scale microbial isopropanol production.</p><p><strong>Results: </strong>Different gas-liquid mass transfer regimes (affected by variations of the stirrer speed and ingas oxygen concentration) allowed the implementation of different microaerobic conditions characterized by their specific oxygen uptake rate (q<sub>O2</sub>) in cultivations with an isopropanol producing E. coli W strain on lactose. Under microaerobic conditions, the specific isopropanol production rate (q<sub>p, ipa</sub>) exhibited a direct correlation with q<sub>O2</sub>. Moreover, isopropanol production showed a pseudo growth-coupled behavior. Monitoring of the formation rates of various by-products such as acetone, lactate, acetate, pyruvate, formate and succinate allowed to identify a q<sub>O2</sub> of 9.6 mmol g<sup>- 1</sup> h<sup>- 1</sup> in only slightly microaerobic cultivations as the best conditions for microbial isopropanol production. Additionally, the data suggests that a carbon bottleneck exists at the pyruvate node and the availability of the redox factor NADPH is crucial to shift the product balance from acetone to isopropanol. Finally, confirmation runs prove the effectiveness of the microaerobic production approach by yielding 8.2 g L<sup>- 1</sup> (135.8 ± 13.3 mmol L<sup>- 1</sup>) and 20.6 g L<sup>- 1</sup> (342.9 ± 0.4 mmol L<sup>- 1</sup>) isopropanol on lactose and whey, respectively, reaching a volumetric isopropanol formation rate of up to 2.44 g L<sup>- 1</sup> h<sup>- 1</sup> (40.6 mmol L<sup>- 1</sup> h<sup>- 1</sup>).</p><p><strong>Conclusions: </strong>This study identifies slightly microaerobic conditions (q<sub>O2</sub> ~ 10 mmol g<sup>- 1</sup> h<sup>- 1</sup>) as the currently best conditions for microbial isopropanol production on lactose and whey in E. coli W. In the future, optimizing the carbon flux around the pyruvate node, ensuring sufficient NADPH supply, and establishing a feedback control loop to control process variables affecting oxygen transfer to the culture, could make microbial isopropanol production feasible at an industrial scale.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"94"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12032697/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02720-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Due to ecological concerns, alternative supply lines for fuel and bulk chemicals such as isopropanol are increasingly pursued. By implementing the formation pathways from natural producers like Clostridium beijerinckii and Clostridium aurantibutyricum, isopropanol can be produced in Escherichia coli. However, developing an industrially and economically feasible microbial production process requires a robust and efficient process strategy. Therefore, this study explores microaerobic conditions in combination with lactose and sour whey as sustainable carbon source as a basis for large-scale microbial isopropanol production.

Results: Different gas-liquid mass transfer regimes (affected by variations of the stirrer speed and ingas oxygen concentration) allowed the implementation of different microaerobic conditions characterized by their specific oxygen uptake rate (qO2) in cultivations with an isopropanol producing E. coli W strain on lactose. Under microaerobic conditions, the specific isopropanol production rate (qp, ipa) exhibited a direct correlation with qO2. Moreover, isopropanol production showed a pseudo growth-coupled behavior. Monitoring of the formation rates of various by-products such as acetone, lactate, acetate, pyruvate, formate and succinate allowed to identify a qO2 of 9.6 mmol g- 1 h- 1 in only slightly microaerobic cultivations as the best conditions for microbial isopropanol production. Additionally, the data suggests that a carbon bottleneck exists at the pyruvate node and the availability of the redox factor NADPH is crucial to shift the product balance from acetone to isopropanol. Finally, confirmation runs prove the effectiveness of the microaerobic production approach by yielding 8.2 g L- 1 (135.8 ± 13.3 mmol L- 1) and 20.6 g L- 1 (342.9 ± 0.4 mmol L- 1) isopropanol on lactose and whey, respectively, reaching a volumetric isopropanol formation rate of up to 2.44 g L- 1 h- 1 (40.6 mmol L- 1 h- 1).

Conclusions: This study identifies slightly microaerobic conditions (qO2 ~ 10 mmol g- 1 h- 1) as the currently best conditions for microbial isopropanol production on lactose and whey in E. coli W. In the future, optimizing the carbon flux around the pyruvate node, ensuring sufficient NADPH supply, and establishing a feedback control loop to control process variables affecting oxygen transfer to the culture, could make microbial isopropanol production feasible at an industrial scale.

通过限氧提高工程大肠杆菌W的可持续异丙醇生产。
背景:由于生态方面的考虑,燃料和散装化学品如异丙醇的替代供应线越来越受到追捧。通过实现天然生产者如贝氏梭菌和抗金丁酸梭菌的形成途径,大肠杆菌可以生产异丙醇。然而,开发一个工业上和经济上可行的微生物生产工艺需要一个强大和有效的工艺策略。因此,本研究探索了以乳糖和酸乳清为可持续碳源的微氧条件,作为大规模微生物异丙醇生产的基础。结果:不同的气液传质机制(受搅拌速度和ingas氧浓度的影响)允许在异丙醇产大肠杆菌W菌株对乳糖的培养中实现不同的微氧条件,其特征是它们的比摄氧量(qO2)。在微氧条件下,异丙醇比产率(qp, ipa)与qO2直接相关。此外,异丙醇的生产表现出伪生长偶联行为。通过对丙酮、乳酸、乙酸、丙酮酸、甲酸和琥珀酸等各种副产物形成速率的监测,确定在微有氧培养中,qO2为9.6 mmol g- 1 h- 1是微生物异丙醇生产的最佳条件。此外,数据表明丙酮酸节点存在碳瓶颈,氧化还原因子NADPH的可用性对于将产物平衡从丙酮转变为异丙醇至关重要。最后,确认运行证明了微氧生产方法的有效性,乳糖和乳清分别产生8.2 g L- 1(135.8±13.3 mmol L- 1)和20.6 g L- 1(342.9±0.4 mmol L- 1)异丙醇,异丙醇的体积生成速率高达2.44 g L- 1 h- 1 (40.6 mmol L- 1 h- 1)。结论:本研究确定微有氧条件(qO2 ~ 10 mmol g- 1 h- 1)是目前大肠杆菌w在乳糖和乳清上生产微生物异丙醇的最佳条件。未来,优化丙酮酸节点周围的碳通量,保证足够的NADPH供应,建立反馈控制回路控制影响氧向培养物转移的过程变量,可以使微生物异丙醇在工业规模上生产可行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信