{"title":"Predictive Modeling for Pandemic Forecasting: A COVID-19 Study in New Zealand and Partner Countries.","authors":"Oras Baker, Zahra Ziran, Massimo Mecella, Kasthuri Subaramaniam, Sellappan Palaniappan","doi":"10.3390/ijerph22040562","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes a data-driven approach to leveraging large-scale COVID-19 datasets to enhance the predictive modeling of disease spread in the early stages. We systematically evaluate three machine learning models-ARIMA, Prophet, and LSTM-using a comprehensive framework that incorporates time-series analysis, multivariate data integration, and a Multi-Criteria Decision Making (MCDM) technique to assess model performance. The study focuses on key features such as daily confirmed cases, geographic variations, and temporal trends, while considering data constraints and adaptability across different scenarios. Our findings reveal that LSTM and ARIMA consistently outperform Prophet, with LSTM achieving the highest predictive accuracy in most cases, particularly when trained on 20-week datasets. ARIMA, however, demonstrates superior stability and reliability across varying time frames, making it a robust choice for short-term forecasting. A direct comparative analysis with existing approaches highlights the strengths and limitations of each model, emphasizing the importance of region-specific data characteristics and training periods. The proposed methodology not only identifies optimal predictive strategies but also establishes a foundation for automating predictive analysis, enabling timely and data-driven decision-making for disease control and prevention. This research is validated using data from New Zealand and its major trading partners-China, Australia, the United States, Japan, and Germany-demonstrating its applicability across diverse contexts. The results contribute to the development of adaptive forecasting frameworks that can empower public health authorities to respond proactively to emerging health threats.</p>","PeriodicalId":49056,"journal":{"name":"International Journal of Environmental Research and Public Health","volume":"22 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026713/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Research and Public Health","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/ijerph22040562","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a data-driven approach to leveraging large-scale COVID-19 datasets to enhance the predictive modeling of disease spread in the early stages. We systematically evaluate three machine learning models-ARIMA, Prophet, and LSTM-using a comprehensive framework that incorporates time-series analysis, multivariate data integration, and a Multi-Criteria Decision Making (MCDM) technique to assess model performance. The study focuses on key features such as daily confirmed cases, geographic variations, and temporal trends, while considering data constraints and adaptability across different scenarios. Our findings reveal that LSTM and ARIMA consistently outperform Prophet, with LSTM achieving the highest predictive accuracy in most cases, particularly when trained on 20-week datasets. ARIMA, however, demonstrates superior stability and reliability across varying time frames, making it a robust choice for short-term forecasting. A direct comparative analysis with existing approaches highlights the strengths and limitations of each model, emphasizing the importance of region-specific data characteristics and training periods. The proposed methodology not only identifies optimal predictive strategies but also establishes a foundation for automating predictive analysis, enabling timely and data-driven decision-making for disease control and prevention. This research is validated using data from New Zealand and its major trading partners-China, Australia, the United States, Japan, and Germany-demonstrating its applicability across diverse contexts. The results contribute to the development of adaptive forecasting frameworks that can empower public health authorities to respond proactively to emerging health threats.
期刊介绍:
International Journal of Environmental Research and Public Health (IJERPH) (ISSN 1660-4601) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes, and short communications in the interdisciplinary area of environmental health sciences and public health. It links several scientific disciplines including biology, biochemistry, biotechnology, cellular and molecular biology, chemistry, computer science, ecology, engineering, epidemiology, genetics, immunology, microbiology, oncology, pathology, pharmacology, and toxicology, in an integrated fashion, to address critical issues related to environmental quality and public health. Therefore, IJERPH focuses on the publication of scientific and technical information on the impacts of natural phenomena and anthropogenic factors on the quality of our environment, the interrelationships between environmental health and the quality of life, as well as the socio-cultural, political, economic, and legal considerations related to environmental stewardship and public health.
The 2018 IJERPH Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJERPH. See full details at http://www.mdpi.com/journal/ijerph/awards.