{"title":"The feather's multi-functional structure across nano to macro scales inspires hierarchical design.","authors":"Sebastian Hendrickx-Rodriguez, David Lentink","doi":"10.1098/rsif.2024.0776","DOIUrl":null,"url":null,"abstract":"<p><p>Bird feathers are finely tuned structures with key features at every length scale, from nanometre to metre, furnishing a unique multi-functional hierarchical design that can inspire material scientists, biologists and designers alike. Feathers are not only a crucial component in equipping birds with flight, but are also responsible for thermoregulation, coloration and crypsis, water repellency, silencing and sound production, sensing, directional fastening and even self-healing. Despite this broad multifunctionality, all feathers are formed from the same basic template using a universal building block: the feather keratin protein. Consequently, feather diversity across approximately 10 000 bird species arises from subtle differences in architecture rather than variations in chemical composition. To understand these underlying hierarchical mechanisms, we systematically review feather properties across all length scales, connecting development and morphogenesis to biomechanics and integrated structure-property-function relationships. This systematic distillation of the feather's complex design into comprehensive principles will enkindle new biohybrid, biomimetic and bioinspired material solutions.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 225","pages":"20240776"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014240/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0776","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Bird feathers are finely tuned structures with key features at every length scale, from nanometre to metre, furnishing a unique multi-functional hierarchical design that can inspire material scientists, biologists and designers alike. Feathers are not only a crucial component in equipping birds with flight, but are also responsible for thermoregulation, coloration and crypsis, water repellency, silencing and sound production, sensing, directional fastening and even self-healing. Despite this broad multifunctionality, all feathers are formed from the same basic template using a universal building block: the feather keratin protein. Consequently, feather diversity across approximately 10 000 bird species arises from subtle differences in architecture rather than variations in chemical composition. To understand these underlying hierarchical mechanisms, we systematically review feather properties across all length scales, connecting development and morphogenesis to biomechanics and integrated structure-property-function relationships. This systematic distillation of the feather's complex design into comprehensive principles will enkindle new biohybrid, biomimetic and bioinspired material solutions.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.