Leonardo Martin Gatica-Soria, M Emilia Roulet, Walter D Tulle, Hector A Sato, M Eugenia Barrandeguy, M Virginia Sanchez-Puerta
{"title":"Highly variable mitochondrial chromosome content in a holoparasitic plant due to recurrent gains of foreign circular DNA.","authors":"Leonardo Martin Gatica-Soria, M Emilia Roulet, Walter D Tulle, Hector A Sato, M Eugenia Barrandeguy, M Virginia Sanchez-Puerta","doi":"10.1111/ppl.70231","DOIUrl":null,"url":null,"abstract":"<p><p>Multichromosomal mitochondrial genomes (mtDNAs) in eukaryotes exhibit remarkable structural diversity, yet intraspecific variability and the origin of the individual chromosomes remain poorly understood. We focus on a holoparasitic angiosperm with an mtDNA consisting of 65 chromosomes largely composed of foreign DNA acquired by horizontal gene transfer (HGT) from its mimosoid hosts. The frequency, timing and population dynamics of these HGT events have not been examined. Here, we sampled different individuals of the holoparasite Lophophytum mirabile, along with their host plants, to assess mtDNA intraspecific variability and capture recent events that may bring insights into the HGT process. We also gathered mitochondrial data from 43 mimosoids to identify older and recent HGT events and assess precisely the proportion of foreign DNA. Through comparative genomic and evolutionary analyses, we uncovered great intraspecific variability in chromosome content and defined the mitochondrial pangenome of L. mirabile with 105 distinct chromosomes. The estimated foreign content reaches 93.5% of the mtDNA, including 73 fully foreign chromosomes that support the circle-mediated HGT model as a key mechanism for their acquisition. We inferred recurrent DNA transfers from the host plants, leading to new mitochondrial chromosomes that replicate autonomously. Our results emphasize the importance of adopting a pangenomic approach to fully capture the genetic diversity and evolution of multichromosomal mitochondrial genomes. This study shows that HGT can strongly influence the mtDNA content and generate enormous intraspecific variability even in geographically close individuals.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70231"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70231","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Multichromosomal mitochondrial genomes (mtDNAs) in eukaryotes exhibit remarkable structural diversity, yet intraspecific variability and the origin of the individual chromosomes remain poorly understood. We focus on a holoparasitic angiosperm with an mtDNA consisting of 65 chromosomes largely composed of foreign DNA acquired by horizontal gene transfer (HGT) from its mimosoid hosts. The frequency, timing and population dynamics of these HGT events have not been examined. Here, we sampled different individuals of the holoparasite Lophophytum mirabile, along with their host plants, to assess mtDNA intraspecific variability and capture recent events that may bring insights into the HGT process. We also gathered mitochondrial data from 43 mimosoids to identify older and recent HGT events and assess precisely the proportion of foreign DNA. Through comparative genomic and evolutionary analyses, we uncovered great intraspecific variability in chromosome content and defined the mitochondrial pangenome of L. mirabile with 105 distinct chromosomes. The estimated foreign content reaches 93.5% of the mtDNA, including 73 fully foreign chromosomes that support the circle-mediated HGT model as a key mechanism for their acquisition. We inferred recurrent DNA transfers from the host plants, leading to new mitochondrial chromosomes that replicate autonomously. Our results emphasize the importance of adopting a pangenomic approach to fully capture the genetic diversity and evolution of multichromosomal mitochondrial genomes. This study shows that HGT can strongly influence the mtDNA content and generate enormous intraspecific variability even in geographically close individuals.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.