{"title":"Strategies to overcome the limitations of current organoid technology - engineered organoids.","authors":"Xulong Fan, Kun Hou, Gaojian Liu, Ruolin Shi, Wenjie Wang, Gaofeng Liang","doi":"10.1177/20417314251319475","DOIUrl":null,"url":null,"abstract":"<p><p>Organoids, as 3D in vitro models derived from stem cells, have unparalleled advantages over traditional cell and animal models for studying organogenesis, disease mechanisms, drug screening, and personalized diagnosis and treatment. Despite the tremendous progress made in organoid technology, the translational application of organoids still presents enormous challenges due to the complex structure and function of human organs. In this review, the limitations of the translational application of traditional organoid technologies are first described. Next, we explore ways to address many of the limitations of traditional organoid cultures by engineering various dimensions of organoid systems. Finally, we discuss future directions in the field, including potential roles in drug screening, simulated microphysiology system and personalized diagnosis and treatment. We hope that this review inspires future research into organoids and microphysiology system.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":"16 ","pages":"20417314251319475"},"PeriodicalIF":6.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12033597/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/20417314251319475","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Organoids, as 3D in vitro models derived from stem cells, have unparalleled advantages over traditional cell and animal models for studying organogenesis, disease mechanisms, drug screening, and personalized diagnosis and treatment. Despite the tremendous progress made in organoid technology, the translational application of organoids still presents enormous challenges due to the complex structure and function of human organs. In this review, the limitations of the translational application of traditional organoid technologies are first described. Next, we explore ways to address many of the limitations of traditional organoid cultures by engineering various dimensions of organoid systems. Finally, we discuss future directions in the field, including potential roles in drug screening, simulated microphysiology system and personalized diagnosis and treatment. We hope that this review inspires future research into organoids and microphysiology system.
期刊介绍:
The Journal of Tissue Engineering (JTE) is a peer-reviewed, open-access journal dedicated to scientific research in the field of tissue engineering and its clinical applications. Our journal encompasses a wide range of interests, from the fundamental aspects of stem cells and progenitor cells, including their expansion to viable numbers, to an in-depth understanding of their differentiation processes. Join us in exploring the latest advancements in tissue engineering and its clinical translation.