Differentiation of non-ST-segment elevation myocardial infarction from unstable angina using coronary computed tomography angiography: the role of imaging features and pericoronary adipose tissue radiomics.

Yang Lu, Qing Wang, Haifeng Liu, Qi Liu, Siqi Wang, Wei Xing
{"title":"Differentiation of non-ST-segment elevation myocardial infarction from unstable angina using coronary computed tomography angiography: the role of imaging features and pericoronary adipose tissue radiomics.","authors":"Yang Lu, Qing Wang, Haifeng Liu, Qi Liu, Siqi Wang, Wei Xing","doi":"10.5603/cj.98559","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To ascertain the diagnostic value of radiomic features of pericoronary adipose tissue (PCAT) and other coronary computed tomography angiography (CCTA) parameters for differentiating non-ST-segment-elevation myocardial infarction (NSTEMI) from unstable angina (UA).</p><p><strong>Methods: </strong>This study included NSTEMI and UA patients (n = 102 each). The radiomic features of PCAT were selected according to the intraclass correlation coefficient, Pearson's coefficient, the t test, and least absolute shrinkage and selection operator. Six classifiers-random forest, support vector machine, naive Bayes, K-nearest neighbors, extreme gradient boosting, and light gradient boosting machine (LightGBM)-were used to build radiomics models, and the best were selected. Four CCTA parameter models, encapsulating plaque parameters (model 1), plaque parameters + fatty attenuation index (FAI) (model 2), plaque parameters + CT fractional flow reserve (CT-FFR) (model 3), and plaque parameters + CT-FFR + FAI (model 4), were constructed. Finally, we established a fusion model (nomogram) with all CCTA parameters and radiomics model scores. All models were compared regarding their performance.</p><p><strong>Results: </strong>The LightGBM radiomics model achieved the highest AUC. Among CCTA parameter models, only model 4 achieved a predictive performance similar to that of the radiomics model in the training and test cohorts (AUC = 0.904 vs. 0.898 and 0.860 vs. 0.877). The combined model (nomogram) showed greater predictive efficacy (AUC = 0.963, 0.910) than model 4 or the radiomics model.</p><p><strong>Conclusion: </strong>The PCAT-based radiomics model accurately distinguishes between NSTEMI and UA, with similar diagnostic performance as the model that combined all the significant CCTA parameters. The nomogram integrating CCTA parameters and the radiomic score has good clinical application prospects.</p>","PeriodicalId":93923,"journal":{"name":"Cardiology journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiology journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5603/cj.98559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: To ascertain the diagnostic value of radiomic features of pericoronary adipose tissue (PCAT) and other coronary computed tomography angiography (CCTA) parameters for differentiating non-ST-segment-elevation myocardial infarction (NSTEMI) from unstable angina (UA).

Methods: This study included NSTEMI and UA patients (n = 102 each). The radiomic features of PCAT were selected according to the intraclass correlation coefficient, Pearson's coefficient, the t test, and least absolute shrinkage and selection operator. Six classifiers-random forest, support vector machine, naive Bayes, K-nearest neighbors, extreme gradient boosting, and light gradient boosting machine (LightGBM)-were used to build radiomics models, and the best were selected. Four CCTA parameter models, encapsulating plaque parameters (model 1), plaque parameters + fatty attenuation index (FAI) (model 2), plaque parameters + CT fractional flow reserve (CT-FFR) (model 3), and plaque parameters + CT-FFR + FAI (model 4), were constructed. Finally, we established a fusion model (nomogram) with all CCTA parameters and radiomics model scores. All models were compared regarding their performance.

Results: The LightGBM radiomics model achieved the highest AUC. Among CCTA parameter models, only model 4 achieved a predictive performance similar to that of the radiomics model in the training and test cohorts (AUC = 0.904 vs. 0.898 and 0.860 vs. 0.877). The combined model (nomogram) showed greater predictive efficacy (AUC = 0.963, 0.910) than model 4 or the radiomics model.

Conclusion: The PCAT-based radiomics model accurately distinguishes between NSTEMI and UA, with similar diagnostic performance as the model that combined all the significant CCTA parameters. The nomogram integrating CCTA parameters and the radiomic score has good clinical application prospects.

冠状动脉ct血管造影对非st段抬高型心肌梗死与不稳定型心绞痛的鉴别:影像学特征和冠状动脉周围脂肪组织放射组学的作用
背景:探讨冠状动脉周围脂肪组织(PCAT)放射学特征及其他冠状动脉ct血管造影(CCTA)参数对非st段抬高型心肌梗死(NSTEMI)与不稳定型心绞痛(UA)鉴别的诊断价值。方法:本研究纳入NSTEMI和UA患者(各102例)。根据类内相关系数、皮尔逊系数、t检验、最小绝对收缩和选择算子选择PCAT的放射学特征。使用随机森林、支持向量机、朴素贝叶斯、k近邻、极端梯度增强和光梯度增强机(LightGBM) 6种分类器构建放射组学模型,并选出最佳分类器。构建斑块参数(模型1)、斑块参数+脂肪衰减指数(FAI)(模型2)、斑块参数+ CT分数血流储备(CT- ffr)(模型3)、斑块参数+ CT- ffr + FAI(模型4)四个CCTA参数模型。最后,我们建立了一个包含所有CCTA参数和放射组学模型评分的融合模型(nomogram)。对所有模型的性能进行了比较。结果:LightGBM放射组学模型的AUC最高。在CCTA参数模型中,只有模型4在训练和测试队列中实现了与放射组学模型相似的预测性能(AUC = 0.904 vs. 0.898, 0.860 vs. 0.877)。联合模型(nomogram)的预测效果优于模型4和放射组学模型(AUC = 0.963, 0.910)。结论:基于pcat的放射组学模型准确区分了NSTEMI和UA,与结合所有重要CCTA参数的模型具有相似的诊断性能。结合CCTA参数与放射学评分的nomogram临床应用前景良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信