Distal tuft dendrites predict properties of new hippocampal place fields.

IF 15 1区 医学 Q1 NEUROSCIENCES
Neuron Pub Date : 2025-06-18 Epub Date: 2025-04-17 DOI:10.1016/j.neuron.2025.03.029
Justin K O'Hare, Jamie Wang, Margjele D Shala, Franck Polleux, Attila Losonczy
{"title":"Distal tuft dendrites predict properties of new hippocampal place fields.","authors":"Justin K O'Hare, Jamie Wang, Margjele D Shala, Franck Polleux, Attila Losonczy","doi":"10.1016/j.neuron.2025.03.029","DOIUrl":null,"url":null,"abstract":"<p><p>Hippocampal pyramidal neurons support episodic memory by integrating complementary information streams into new \"place fields.\" Distal tuft dendrites have been proposed to drive place field formation via dendritic plateau potentials. However, the relationship between distal dendritic and somatic activity is unknown in vivo. Here, we gained simultaneous optical access to distal tuft dendrites and their soma in head-fixed mice navigating virtual reality environments. While distal tuft dendrites rarely express local peri-formation plateau potentials, the timing and extent of their recruitment predict properties of resultant somatic place fields. Following somatic place field formation, distal tuft dendrites readily express plateau potentials as well as local place fields that are back shifted relative to that of their soma. Distal tuft dendrites may therefore undergo local plasticity during somatic place field formation. Through direct in vivo observation, we provide an updated dendritic basis for hippocampal feature selectivity during navigational learning.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"1969-1982.e7"},"PeriodicalIF":15.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181068/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.03.029","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hippocampal pyramidal neurons support episodic memory by integrating complementary information streams into new "place fields." Distal tuft dendrites have been proposed to drive place field formation via dendritic plateau potentials. However, the relationship between distal dendritic and somatic activity is unknown in vivo. Here, we gained simultaneous optical access to distal tuft dendrites and their soma in head-fixed mice navigating virtual reality environments. While distal tuft dendrites rarely express local peri-formation plateau potentials, the timing and extent of their recruitment predict properties of resultant somatic place fields. Following somatic place field formation, distal tuft dendrites readily express plateau potentials as well as local place fields that are back shifted relative to that of their soma. Distal tuft dendrites may therefore undergo local plasticity during somatic place field formation. Through direct in vivo observation, we provide an updated dendritic basis for hippocampal feature selectivity during navigational learning.

远端丛状树突预测新海马位场的性质。
海马体锥体神经元通过将互补的信息流整合到新的“地点场”中来支持情景记忆。远端丛状树突被认为通过树突高原电位驱动位置场的形成。然而,远端树突和躯体活动之间的关系在体内是未知的。在这里,我们获得了在虚拟现实环境中导航的头部固定小鼠的远端丛树突及其体的同步光学访问。虽然远端丛状树突很少表达局部围成期高原电位,但它们募集的时间和程度预测了最终体细胞位场的性质。体细胞位置场形成后,远端丛状树突容易表达高原电位以及相对于体细胞位置场向后移动的局部位置场。因此,在体细胞位置场形成过程中,远端丛树突可能经历局部可塑性。通过直接的活体观察,我们为导航学习过程中海马特征选择提供了一个更新的树突基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信