Artificial intelligence image analysis for Hounsfield units in preoperative thoracolumbar CT scans: an automated screening for osteoporosis in patients undergoing spine surgery.
Emily Feng, Nishantha M Jayasuriya, Karim Rizwan Nathani, Konstantinos Katsos, Laura A Machlab, Graham W Johnson, Brett A Freedman, Mohamad Bydon
{"title":"Artificial intelligence image analysis for Hounsfield units in preoperative thoracolumbar CT scans: an automated screening for osteoporosis in patients undergoing spine surgery.","authors":"Emily Feng, Nishantha M Jayasuriya, Karim Rizwan Nathani, Konstantinos Katsos, Laura A Machlab, Graham W Johnson, Brett A Freedman, Mohamad Bydon","doi":"10.3171/2025.1.SPINE24900","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to develop an artificial intelligence (AI) model for automatically detecting Hounsfield unit (HU) values at the L1 vertebra in preoperative thoracolumbar CT scans. This model serves as a screening tool for osteoporosis in patients undergoing spine surgery, offering an alternative to traditional bone mineral density measurement methods like dual-energy x-ray absorptiometry.</p><p><strong>Methods: </strong>The authors utilized two CT scan datasets, comprising 501 images, which were split into training, validation, and test subsets. The nnU-Net framework was used for segmentation, followed by an algorithm to calculate HU values from the L1 vertebra. The model's performance was validated against manual HU calculations by expert raters on 56 CT scans. Statistical measures included the Dice coefficient, Pearson correlation coefficient, intraclass correlation coefficient (ICC), and Bland-Altman plots to assess the agreement between AI and human-derived HU measurements.</p><p><strong>Results: </strong>The AI model achieved a high Dice coefficient of 0.91 for vertebral segmentation. The Pearson correlation coefficient between AI-derived HU and human-derived HU values was 0.96, indicating strong agreement. ICC values for interrater reliability were 0.95 and 0.94 for raters 1 and 2, respectively. The mean difference between AI and human HU values was 7.0 HU, with limits of agreement ranging from -21.1 to 35.2 HU. A paired t-test showed no significant difference between AI and human measurements (p = 0.21).</p><p><strong>Conclusions: </strong>The AI model demonstrated strong agreement with human experts in measuring HU values, validating its potential as a reliable tool for automated osteoporosis screening in spine surgery patients. This approach can enhance preoperative risk assessment and perioperative bone health optimization. Future research should focus on external validation and inclusion of diverse patient demographics to ensure broader applicability.</p>","PeriodicalId":16562,"journal":{"name":"Journal of neurosurgery. Spine","volume":" ","pages":"1-8"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurosurgery. Spine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3171/2025.1.SPINE24900","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study aimed to develop an artificial intelligence (AI) model for automatically detecting Hounsfield unit (HU) values at the L1 vertebra in preoperative thoracolumbar CT scans. This model serves as a screening tool for osteoporosis in patients undergoing spine surgery, offering an alternative to traditional bone mineral density measurement methods like dual-energy x-ray absorptiometry.
Methods: The authors utilized two CT scan datasets, comprising 501 images, which were split into training, validation, and test subsets. The nnU-Net framework was used for segmentation, followed by an algorithm to calculate HU values from the L1 vertebra. The model's performance was validated against manual HU calculations by expert raters on 56 CT scans. Statistical measures included the Dice coefficient, Pearson correlation coefficient, intraclass correlation coefficient (ICC), and Bland-Altman plots to assess the agreement between AI and human-derived HU measurements.
Results: The AI model achieved a high Dice coefficient of 0.91 for vertebral segmentation. The Pearson correlation coefficient between AI-derived HU and human-derived HU values was 0.96, indicating strong agreement. ICC values for interrater reliability were 0.95 and 0.94 for raters 1 and 2, respectively. The mean difference between AI and human HU values was 7.0 HU, with limits of agreement ranging from -21.1 to 35.2 HU. A paired t-test showed no significant difference between AI and human measurements (p = 0.21).
Conclusions: The AI model demonstrated strong agreement with human experts in measuring HU values, validating its potential as a reliable tool for automated osteoporosis screening in spine surgery patients. This approach can enhance preoperative risk assessment and perioperative bone health optimization. Future research should focus on external validation and inclusion of diverse patient demographics to ensure broader applicability.
期刊介绍:
Primarily publish original works in neurosurgery but also include studies in clinical neurophysiology, organic neurology, ophthalmology, radiology, pathology, and molecular biology.