Francesca Sairally, Rory P Turnbull, Heidi J Siddle, David A Russell, Claire Brockett, Peter R Culmer
{"title":"Development and evaluation of a novel 3D in-shoe plantar strain measurement system: STAMPS3D.","authors":"Francesca Sairally, Rory P Turnbull, Heidi J Siddle, David A Russell, Claire Brockett, Peter R Culmer","doi":"10.1177/09544119251330738","DOIUrl":null,"url":null,"abstract":"<p><p>The formation of diabetic foot ulcers (DFU) is consequential of peripheral neuropathy, peripheral arterial disease and foot deformity, leading to altered foot biomechanics and plantar loads. Plantar load comprises of normal pressure and shear stress, however, there are currently no in-shoe devices capable of measuring both components. The STrain Analysis and Mapping of the Plantar Surface (STAMPS) system, developed at the University of Leeds, utilises Digital Image Correlation (DIC) to measure the strain captured by a plastically deformable insole, as a method to understand plantar load during gait. A 2D DIC software was used to capture cumulative plantar strain and displacement pointwise data, however this method was limited to the analysis of planar surfaces. To address this, 3D instrumentation and DIC methods have been developed and implemented into the STAMPS3D system, used as a tool to capture data that is representative of the non-planar nature of plantar surfaces of the foot. A case-study is used to demonstrate how STAMPS3D can measure multi-dimensional strain, bringing potential to improve clinical screening of DFU risk.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"472-484"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075883/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251330738","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The formation of diabetic foot ulcers (DFU) is consequential of peripheral neuropathy, peripheral arterial disease and foot deformity, leading to altered foot biomechanics and plantar loads. Plantar load comprises of normal pressure and shear stress, however, there are currently no in-shoe devices capable of measuring both components. The STrain Analysis and Mapping of the Plantar Surface (STAMPS) system, developed at the University of Leeds, utilises Digital Image Correlation (DIC) to measure the strain captured by a plastically deformable insole, as a method to understand plantar load during gait. A 2D DIC software was used to capture cumulative plantar strain and displacement pointwise data, however this method was limited to the analysis of planar surfaces. To address this, 3D instrumentation and DIC methods have been developed and implemented into the STAMPS3D system, used as a tool to capture data that is representative of the non-planar nature of plantar surfaces of the foot. A case-study is used to demonstrate how STAMPS3D can measure multi-dimensional strain, bringing potential to improve clinical screening of DFU risk.
期刊介绍:
The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.