Leveraging large language models to compare perspectives on integrating QSP and AI/ML.

IF 2.2 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Ioannis P Androulakis, Limei Cheng, Carolyn R Cho, Tongli Zhang
{"title":"Leveraging large language models to compare perspectives on integrating QSP and AI/ML.","authors":"Ioannis P Androulakis, Limei Cheng, Carolyn R Cho, Tongli Zhang","doi":"10.1007/s10928-025-09976-5","DOIUrl":null,"url":null,"abstract":"<p><p>Two recent papers offer contrasting perspectives on integrating Quantitative Systems Pharmacology (QSP) and Artificial Intelligence/Machine Learning (AI/ML): one views QSP as the primary driver using AI/ML to enhance computational tasks, while the other argues that AI/ML should provide an alternative mechanistic framework. Rather than perpetuate this tension, we used Large Language Models (LLMs) to examine both papers in two tests-one comparing their core arguments and another probing which methodology LLM should take precedence. Repeating each test multiple times with an identical and neutral prompt, the LLM revealed that each perspective suits specific stages of the drug development pipeline. QSP offers mechanistic rigor and regulatory clarity, and AI/ML excels in high-dimensional data analysis and exploratory modeling. A hybrid approach might best serve researchers and decision-makers, especially when harmonizing data-driven insights with mechanistic integrity. This exercise also highlights the potential of LLMs as promising tools for synthesizing complex information, offering an arguably less biased viewpoint that can trigger deeper discussion from the broader community seeking to align QSP and AI/ML in model-informed drug development (MIDD). By combining our human expertise with AI-driven analyses, we hope to further discuss with the scientific community how QSP and AI/ML-and the synergy between them-can drive innovation in therapeutic discovery and optimization.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"52 3","pages":"29"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-025-09976-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Two recent papers offer contrasting perspectives on integrating Quantitative Systems Pharmacology (QSP) and Artificial Intelligence/Machine Learning (AI/ML): one views QSP as the primary driver using AI/ML to enhance computational tasks, while the other argues that AI/ML should provide an alternative mechanistic framework. Rather than perpetuate this tension, we used Large Language Models (LLMs) to examine both papers in two tests-one comparing their core arguments and another probing which methodology LLM should take precedence. Repeating each test multiple times with an identical and neutral prompt, the LLM revealed that each perspective suits specific stages of the drug development pipeline. QSP offers mechanistic rigor and regulatory clarity, and AI/ML excels in high-dimensional data analysis and exploratory modeling. A hybrid approach might best serve researchers and decision-makers, especially when harmonizing data-driven insights with mechanistic integrity. This exercise also highlights the potential of LLMs as promising tools for synthesizing complex information, offering an arguably less biased viewpoint that can trigger deeper discussion from the broader community seeking to align QSP and AI/ML in model-informed drug development (MIDD). By combining our human expertise with AI-driven analyses, we hope to further discuss with the scientific community how QSP and AI/ML-and the synergy between them-can drive innovation in therapeutic discovery and optimization.

利用大型语言模型来比较集成QSP和AI/ML的观点。
最近的两篇论文提供了关于整合定量系统药理学(QSP)和人工智能/机器学习(AI/ML)的不同观点:一篇认为QSP是使用AI/ML增强计算任务的主要驱动因素,而另一篇则认为AI/ML应该提供另一种机制框架。为了避免这种紧张关系,我们使用大型语言模型(LLM)在两个测试中检查这两篇论文——一个比较他们的核心论点,另一个探索哪种LLM方法应该优先考虑。在相同的中性提示下多次重复每个测试,LLM发现每个角度都适合药物开发管道的特定阶段。QSP提供了机制的严密性和监管的明确性,AI/ML在高维数据分析和探索性建模方面表现出色。混合方法可能最好地服务于研究人员和决策者,特别是在协调数据驱动的见解与机制完整性时。该练习还强调了llm作为合成复杂信息的有前途的工具的潜力,提供了一个可以争议的较少偏见的观点,可以引发更广泛的社区寻求将QSP和AI/ML结合在模型信息药物开发(MIDD)中的更深入的讨论。通过将我们的人类专业知识与人工智能驱动的分析相结合,我们希望与科学界进一步讨论QSP和人工智能/机器学习以及它们之间的协同作用如何推动治疗发现和优化的创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信