Plant-aphid interactions: recent trends in plant resistance to aphids.

IF 5.8
Kifle Gebreegziabiher Gebretsadik, Zhixin Liu, Jincheng Yang, Hao Liu, Aizhi Qin, Yaping Zhou, Enzhi Guo, Xiao Song, Peibo Gao, Yajie Xie, Ninkuu Vincent, Lam-Son Phan Tran, Xuwu Sun
{"title":"Plant-aphid interactions: recent trends in plant resistance to aphids.","authors":"Kifle Gebreegziabiher Gebretsadik, Zhixin Liu, Jincheng Yang, Hao Liu, Aizhi Qin, Yaping Zhou, Enzhi Guo, Xiao Song, Peibo Gao, Yajie Xie, Ninkuu Vincent, Lam-Son Phan Tran, Xuwu Sun","doi":"10.1007/s44154-025-00214-z","DOIUrl":null,"url":null,"abstract":"<p><p>Aphids are highly destructive agricultural pests characterized by complex life cycles and phenotypic variability, facilitating their adaptation to diverse climates and host plants. Their feeding behavior leads to plant deformation, wilting, stunted growth, disease transmission, and significant yield losses. Given the economic risks aphids pose, regular updates on their seasonal behaviors, adaptive mechanisms, and destructive activities are critical for improving management strategies to mitigate crop losses. This review comprehensively synthesizes recent studies on aphids as plant pests, the extrinsic factors influencing their life cycles, and the intricate interactions between aphids and their hosts. It also highlights recent advancements in biological control measures, including natural enemies, antibiosis, and antixenosis. Additionally, we explore plant defense mechanisms against aphids, focusing on the roles of cell wall components such as lignin, pectin and callose deposition and the genetic regulations underlying these defenses. Aphids, however, can evolve specialized strategies to overcome general plant defenses, prompting the development of targeted mechanisms in plants, such as the use of resistance (R) genes against specific aphid species. Additionally, plant pattern recognition receptors (PRRs) recognize compounds in aphid saliva, which triggers enhanced phloem sealing and more focused immune responses. This work enhances understanding of aphid-plant interaction and plant resistance and identifies key research gaps for future studies.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"5 1","pages":"28"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12041410/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stress biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44154-025-00214-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aphids are highly destructive agricultural pests characterized by complex life cycles and phenotypic variability, facilitating their adaptation to diverse climates and host plants. Their feeding behavior leads to plant deformation, wilting, stunted growth, disease transmission, and significant yield losses. Given the economic risks aphids pose, regular updates on their seasonal behaviors, adaptive mechanisms, and destructive activities are critical for improving management strategies to mitigate crop losses. This review comprehensively synthesizes recent studies on aphids as plant pests, the extrinsic factors influencing their life cycles, and the intricate interactions between aphids and their hosts. It also highlights recent advancements in biological control measures, including natural enemies, antibiosis, and antixenosis. Additionally, we explore plant defense mechanisms against aphids, focusing on the roles of cell wall components such as lignin, pectin and callose deposition and the genetic regulations underlying these defenses. Aphids, however, can evolve specialized strategies to overcome general plant defenses, prompting the development of targeted mechanisms in plants, such as the use of resistance (R) genes against specific aphid species. Additionally, plant pattern recognition receptors (PRRs) recognize compounds in aphid saliva, which triggers enhanced phloem sealing and more focused immune responses. This work enhances understanding of aphid-plant interaction and plant resistance and identifies key research gaps for future studies.

植物与蚜虫的相互作用:植物抗蚜虫的最新趋势。
蚜虫是具有高度破坏性的农业害虫,其特征是复杂的生命周期和表型变异性,有助于它们适应不同的气候和寄主植物。它们的取食行为导致植物变形、枯萎、生长发育迟缓、疾病传播和显著的产量损失。鉴于蚜虫带来的经济风险,定期更新蚜虫的季节性行为、适应机制和破坏性活动对于改善管理策略以减轻作物损失至关重要。本文综述了近年来蚜虫作为植物害虫的研究进展、影响蚜虫生命周期的外来因素以及蚜虫与寄主之间复杂的相互作用。它还强调了生物防治措施的最新进展,包括天敌、抗生素和抗虫病。此外,我们还探讨了植物对蚜虫的防御机制,重点研究了木质素、果胶和胼胝质沉积等细胞壁成分的作用以及这些防御的遗传调控。然而,蚜虫可以进化出特殊的策略来克服一般的植物防御,促进植物中靶向机制的发展,例如使用抗性(R)基因来对抗特定的蚜虫物种。此外,植物模式识别受体(PRRs)识别蚜虫唾液中的化合物,从而增强韧皮部密封和更集中的免疫反应。这项工作提高了对蚜虫与植物相互作用和植物抗性的理解,并为未来的研究确定了关键的研究空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信