Soeun Kim, Kyung Jo, Seul-Ki-Chan Jeong, Hayeon Jeon, Seokhee Han, Minkyung Woo, Yun-Sang Choi, Samooel Jung, Seonmin Lee
{"title":"Exploring the <i>in vitro</i> protein digestive behaviors of pork sausage models based on NaCl level-dependent gel properties.","authors":"Soeun Kim, Kyung Jo, Seul-Ki-Chan Jeong, Hayeon Jeon, Seokhee Han, Minkyung Woo, Yun-Sang Choi, Samooel Jung, Seonmin Lee","doi":"10.5187/jast.2024.e74","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the impact of varying NaCl concentrations on the gel properties and <i>in vitro</i> digestive behavior of pork sausage models. Meat batters formulated with pork shoulders were prepared with NaCl concentrations of 1.0% , 1.5%, and 2.0% (w/w). NaCl 2.0% yielded the lowest actomyosin content (33.46%) and highest total protein solubility (0.61 g/g) in the batter (<i>p</i> < 0.05), followed by 1.5% (34.72% and 0.56 g/g, respectively) and 1.0% (42.19% and 0.55 g/g, respectively). Subsequently, pork sausage models were produced by placing the batters in stainless-steel cans, vacuum-packing, and heating. The sausages prepared with NaCl 2.0% exhibited the lowest cooking loss (2.8%, <i>p</i> < 0.05), with corresponding the highest hardness and cohesiveness values of 102.47 N and 0.44, respectively, among the treatments (<i>p</i> < 0.05). <i>In vitro</i> gastric digestion revealed that lower NaCl concentrations (1.0% and 1.5%) led to a higher release of α-amino groups (0.29 and 0.31 mM/g, respectively) than NaCl 2.0% (0.24 mM/g, <i>p</i> < 0.05) with the larger and more aggregated gel particles in the fluorescence microscopic images. However, after the small intestinal digestion, NaCl 1.0% retained the highest release of α-amino groups (2.19 mM/g, <i>p</i> < 0.05), whereas NaCl 1.5% had the lowest value (1.96 mM/g, <i>p</i> < 0.05). These findings illustrate that the variations in the physicochemical and gel properties of pork sausages depending on the NaCl levels result in the different <i>in vitro</i> protein digestive behaviors.</p>","PeriodicalId":14923,"journal":{"name":"Journal of Animal Science and Technology","volume":"67 2","pages":"439-452"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12010218/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5187/jast.2024.e74","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the impact of varying NaCl concentrations on the gel properties and in vitro digestive behavior of pork sausage models. Meat batters formulated with pork shoulders were prepared with NaCl concentrations of 1.0% , 1.5%, and 2.0% (w/w). NaCl 2.0% yielded the lowest actomyosin content (33.46%) and highest total protein solubility (0.61 g/g) in the batter (p < 0.05), followed by 1.5% (34.72% and 0.56 g/g, respectively) and 1.0% (42.19% and 0.55 g/g, respectively). Subsequently, pork sausage models were produced by placing the batters in stainless-steel cans, vacuum-packing, and heating. The sausages prepared with NaCl 2.0% exhibited the lowest cooking loss (2.8%, p < 0.05), with corresponding the highest hardness and cohesiveness values of 102.47 N and 0.44, respectively, among the treatments (p < 0.05). In vitro gastric digestion revealed that lower NaCl concentrations (1.0% and 1.5%) led to a higher release of α-amino groups (0.29 and 0.31 mM/g, respectively) than NaCl 2.0% (0.24 mM/g, p < 0.05) with the larger and more aggregated gel particles in the fluorescence microscopic images. However, after the small intestinal digestion, NaCl 1.0% retained the highest release of α-amino groups (2.19 mM/g, p < 0.05), whereas NaCl 1.5% had the lowest value (1.96 mM/g, p < 0.05). These findings illustrate that the variations in the physicochemical and gel properties of pork sausages depending on the NaCl levels result in the different in vitro protein digestive behaviors.
期刊介绍:
Journal of Animal Science and Technology (J. Anim. Sci. Technol. or JAST) is a peer-reviewed, open access journal publishing original research, review articles and notes in all fields of animal science.
Topics covered by the journal include: genetics and breeding, physiology, nutrition of monogastric animals, nutrition of ruminants, animal products (milk, meat, eggs and their by-products) and their processing, grasslands and roughages, livestock environment, animal biotechnology, animal behavior and welfare.
Articles generally report research involving beef cattle, dairy cattle, pigs, companion animals, goats, horses, and sheep. However, studies involving other farm animals, aquatic and wildlife species, and laboratory animal species that address fundamental questions related to livestock and companion animal biology will also be considered for publication.
The Journal of Animal Science and Technology (J. Anim. Technol. or JAST) has been the official journal of The Korean Society of Animal Science and Technology (KSAST) since 2000, formerly known as The Korean Journal of Animal Sciences (launched in 1956).