Ruth Knox, Rachel Smith, Emily E Kempa, Reynard Spiess, Christian Schnepel, Nicholas J Turner, Sabine L Flitsch, Perdita E Barran
{"title":"Direct analysis of biotransformations with mass spectrometry-DiBT-MS.","authors":"Ruth Knox, Rachel Smith, Emily E Kempa, Reynard Spiess, Christian Schnepel, Nicholas J Turner, Sabine L Flitsch, Perdita E Barran","doi":"10.1038/s41596-025-01161-9","DOIUrl":null,"url":null,"abstract":"<p><p>The development and analysis of engineered enzymes is greatly assisted by the use of high-throughput screening to quickly determine the efficacy of biotransformations under various conditions. Ambient ionization, particularly desorption electrospray ionization (DESI), coupled to high-resolution mass spectrometry has the advantages of minimal requirements for sample preparation before analysis, which renders it suitable for high-throughput screening, in which the accurate mass and potentially the tandem mass spectrometry (MS) fingerprint for any given product can be used for identification. We present a protocol that permits the application of this method in routine biotechnology and chemical biology laboratories that are using engineered enzymes (such as imine reductases and carboxylic acid reductases, mentioned herein) to produce target compounds from substrates (quinoline moieties and phenyl(piperazinyl) moieties, respectively). Through the use of DESI's MS imaging capabilities, reaction monitoring can be easily visualized via imaging of selected substrate or product ions in a convenient, user-friendly workflow. We describe here how DESI-MS can be used to directly analyze the activity of biotransformations from crude cell lysate, which we term 'DiBT-MS'. The DiBT-MS method presented here is 10-1,000 times as fast as liquid chromatography-MS, with the full procedure for 96 samples taking ~2 h and consuming far less solvent and sample. Also demonstrated in this protocol is the impact of solvent spray composition on ionization efficiency of the target analyte, the benefits of a nylon membrane slide and the reusability of sample slides in multiple experiments.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01161-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The development and analysis of engineered enzymes is greatly assisted by the use of high-throughput screening to quickly determine the efficacy of biotransformations under various conditions. Ambient ionization, particularly desorption electrospray ionization (DESI), coupled to high-resolution mass spectrometry has the advantages of minimal requirements for sample preparation before analysis, which renders it suitable for high-throughput screening, in which the accurate mass and potentially the tandem mass spectrometry (MS) fingerprint for any given product can be used for identification. We present a protocol that permits the application of this method in routine biotechnology and chemical biology laboratories that are using engineered enzymes (such as imine reductases and carboxylic acid reductases, mentioned herein) to produce target compounds from substrates (quinoline moieties and phenyl(piperazinyl) moieties, respectively). Through the use of DESI's MS imaging capabilities, reaction monitoring can be easily visualized via imaging of selected substrate or product ions in a convenient, user-friendly workflow. We describe here how DESI-MS can be used to directly analyze the activity of biotransformations from crude cell lysate, which we term 'DiBT-MS'. The DiBT-MS method presented here is 10-1,000 times as fast as liquid chromatography-MS, with the full procedure for 96 samples taking ~2 h and consuming far less solvent and sample. Also demonstrated in this protocol is the impact of solvent spray composition on ionization efficiency of the target analyte, the benefits of a nylon membrane slide and the reusability of sample slides in multiple experiments.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.