Iván Díaz, Nicholas Williams, Katherine L Hoffman, Nima S Hejazi
{"title":"Author correction to: \"causal survival analysis under competing risks using longitudinal modified treatment policies\".","authors":"Iván Díaz, Nicholas Williams, Katherine L Hoffman, Nima S Hejazi","doi":"10.1007/s10985-025-09651-4","DOIUrl":null,"url":null,"abstract":"<p><p>The published version of the manuscript (D´iaz, Hoffman, Hejazi Lifetime Data Anal 30, 213-236, 2024) contained an error (We would like to thank Kara Rudolph for pointing out an issue that led to uncovering the error)) in the definition of the outcome that had cascading effects and created errors in the definition of multiple objects in the paper. We correct those errors here. For completeness, we reproduce the entire manuscript, underlining places where we made a correction.Longitudinal modified treatment policies (LMTP) have been recently developed as a novel method to define and estimate causal parameters that depend on the natural value of treatment. LMTPs represent an important advancement in causal inference for longitudinal studies as they allow the non-parametric definition and estimation of the joint effect of multiple categorical, ordinal, or continuous treatments measured at several time points. We extend the LMTP methodology to problems in which the outcome is a time-to-event variable subject to a competing event that precludes observation of the event of interest. We present identification results and non-parametric locally efficient estimators that use flexible data-adaptive regression techniques to alleviate model misspecification bias, while retaining important asymptotic properties such as <math><msqrt><mi>n</mi></msqrt> </math> -consistency. We present an application to the estimation of the effect of the time-to-intubation on acute kidney injury amongst COVID- 19 hospitalized patients, where death by other causes is taken to be the competing event.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":"31 2","pages":"442-471"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-025-09651-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The published version of the manuscript (D´iaz, Hoffman, Hejazi Lifetime Data Anal 30, 213-236, 2024) contained an error (We would like to thank Kara Rudolph for pointing out an issue that led to uncovering the error)) in the definition of the outcome that had cascading effects and created errors in the definition of multiple objects in the paper. We correct those errors here. For completeness, we reproduce the entire manuscript, underlining places where we made a correction.Longitudinal modified treatment policies (LMTP) have been recently developed as a novel method to define and estimate causal parameters that depend on the natural value of treatment. LMTPs represent an important advancement in causal inference for longitudinal studies as they allow the non-parametric definition and estimation of the joint effect of multiple categorical, ordinal, or continuous treatments measured at several time points. We extend the LMTP methodology to problems in which the outcome is a time-to-event variable subject to a competing event that precludes observation of the event of interest. We present identification results and non-parametric locally efficient estimators that use flexible data-adaptive regression techniques to alleviate model misspecification bias, while retaining important asymptotic properties such as -consistency. We present an application to the estimation of the effect of the time-to-intubation on acute kidney injury amongst COVID- 19 hospitalized patients, where death by other causes is taken to be the competing event.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.