Shuaishuai Zhou, Miaomiao Wang, Ruoyi Chen, Wengeng Yu, Mengmeng Li, Siwen Meng, Ziru Zhang, Congcong Xia, Hongtao Zhao, Lei Liu
{"title":"ROOT INITIATION DEFECTIVE 1 regulates seed germination through transcription rather than alternative splicing in a temperature-dependent manner.","authors":"Shuaishuai Zhou, Miaomiao Wang, Ruoyi Chen, Wengeng Yu, Mengmeng Li, Siwen Meng, Ziru Zhang, Congcong Xia, Hongtao Zhao, Lei Liu","doi":"10.1007/s11103-025-01587-5","DOIUrl":null,"url":null,"abstract":"<p><p>Timely seed germination is a crucial process for plant survival and subsequent propagation, which is significantly impacted by high temperatures. ROOT INITIATION DEFECTIVE 1 (RID1), an Arabidopsis DEAH/RHA RNA helicase, has been previously reported to modulate the cellular specification of mature female gametophyte and callus initiation from hypocotyl explants through proper alternative splicing. However, the role of RID1 in the regulation of seed germination remains largely unexplored. Here, we identified that mutations in RID1 delayed seed germination more severely at 28℃ compared to 22℃. Notably, we found that the rid1-1 mutation did not significantly alter genome-wide alternative splicing patterns during seed germination compared to the wild type. Further evidences demonstrated that RID1 regulates seed germination via the abscisic acid (ABA) pathway by physically and genetically interacting with the SKIP-associated transcriptional complex. These results suggest that RID1 regulates seed germination in response to ambient temperature at the transcriptional level rather than through alternative splicing regulation. This study provides novel insights into the mechanisms underlying the regulation of seed germination.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 3","pages":"58"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01587-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Timely seed germination is a crucial process for plant survival and subsequent propagation, which is significantly impacted by high temperatures. ROOT INITIATION DEFECTIVE 1 (RID1), an Arabidopsis DEAH/RHA RNA helicase, has been previously reported to modulate the cellular specification of mature female gametophyte and callus initiation from hypocotyl explants through proper alternative splicing. However, the role of RID1 in the regulation of seed germination remains largely unexplored. Here, we identified that mutations in RID1 delayed seed germination more severely at 28℃ compared to 22℃. Notably, we found that the rid1-1 mutation did not significantly alter genome-wide alternative splicing patterns during seed germination compared to the wild type. Further evidences demonstrated that RID1 regulates seed germination via the abscisic acid (ABA) pathway by physically and genetically interacting with the SKIP-associated transcriptional complex. These results suggest that RID1 regulates seed germination in response to ambient temperature at the transcriptional level rather than through alternative splicing regulation. This study provides novel insights into the mechanisms underlying the regulation of seed germination.
期刊介绍:
Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.