Minjing Wang, Joshua B Krueger, Alexandria K Gilkey, Erin M Stelljes, Mitchell G Kluesner, Emily J Pomeroy, Joseph G Skeate, Nicholas J Slipek, Walker S Lahr, Patricia N Claudio Vázquez, Yueting Zhao, Jason B Bell, Kendell Clement, Ella J Eaton, Kanut Laoharawee, Jae-Woong Chang, Beau R Webber, Branden S Moriarity
{"title":"Precision enhancement of CAR-NK cells through non-viral engineering and highly multiplexed base editing.","authors":"Minjing Wang, Joshua B Krueger, Alexandria K Gilkey, Erin M Stelljes, Mitchell G Kluesner, Emily J Pomeroy, Joseph G Skeate, Nicholas J Slipek, Walker S Lahr, Patricia N Claudio Vázquez, Yueting Zhao, Jason B Bell, Kendell Clement, Ella J Eaton, Kanut Laoharawee, Jae-Woong Chang, Beau R Webber, Branden S Moriarity","doi":"10.1136/jitc-2024-009560","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Natural killer (NK) cells' unique ability to kill transformed cells expressing stress ligands or lacking major histocompatibility complexes (MHC) has prompted their development for immunotherapy. However, NK cells have demonstrated only moderate responses against cancer in clinical trials.</p><p><strong>Methods: </strong>Advanced genome engineering may thus be used to unlock their full potential. Multiplex genome editing with CRISPR/Cas9 base editors (BEs) has been used to enhance T cell function and has already entered clinical trials but has not been reported in human NK cells. Here, we report the first application of BE in primary NK cells to achieve both loss-of-function and gain-of-function mutations.</p><p><strong>Results: </strong>We observed highly efficient single and multiplex base editing, resulting in significantly enhanced NK cell function in vitro and in vivo. Next, we combined multiplex BE with non-viral <i>TcBuster</i> transposon-based integration to generate interleukin-15 armored CD19 chimeric antigen receptor (CAR)-NK cells with significantly improved functionality in a highly suppressive model of Burkitt's lymphoma both in vitro and in vivo.</p><p><strong>Conclusions: </strong>The use of concomitant non-viral transposon engineering with multiplex base editing thus represents a highly versatile and efficient platform to generate CAR-NK products for cell-based immunotherapy and affords the flexibility to tailor multiple gene edits to maximize the effectiveness of the therapy for the cancer type being treated.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 5","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067936/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Immunotherapy of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jitc-2024-009560","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Natural killer (NK) cells' unique ability to kill transformed cells expressing stress ligands or lacking major histocompatibility complexes (MHC) has prompted their development for immunotherapy. However, NK cells have demonstrated only moderate responses against cancer in clinical trials.
Methods: Advanced genome engineering may thus be used to unlock their full potential. Multiplex genome editing with CRISPR/Cas9 base editors (BEs) has been used to enhance T cell function and has already entered clinical trials but has not been reported in human NK cells. Here, we report the first application of BE in primary NK cells to achieve both loss-of-function and gain-of-function mutations.
Results: We observed highly efficient single and multiplex base editing, resulting in significantly enhanced NK cell function in vitro and in vivo. Next, we combined multiplex BE with non-viral TcBuster transposon-based integration to generate interleukin-15 armored CD19 chimeric antigen receptor (CAR)-NK cells with significantly improved functionality in a highly suppressive model of Burkitt's lymphoma both in vitro and in vivo.
Conclusions: The use of concomitant non-viral transposon engineering with multiplex base editing thus represents a highly versatile and efficient platform to generate CAR-NK products for cell-based immunotherapy and affords the flexibility to tailor multiple gene edits to maximize the effectiveness of the therapy for the cancer type being treated.
期刊介绍:
The Journal for ImmunoTherapy of Cancer (JITC) is a peer-reviewed publication that promotes scientific exchange and deepens knowledge in the constantly evolving fields of tumor immunology and cancer immunotherapy. With an open access format, JITC encourages widespread access to its findings. The journal covers a wide range of topics, spanning from basic science to translational and clinical research. Key areas of interest include tumor-host interactions, the intricate tumor microenvironment, animal models, the identification of predictive and prognostic immune biomarkers, groundbreaking pharmaceutical and cellular therapies, innovative vaccines, combination immune-based treatments, and the study of immune-related toxicity.