Yu Lan, Isabel Rancu, Melanie H Chitwood, Benjamin Sobkowiak, Kate Nyhan, Hsien-Ho Lin, Chieh-Yin Wu, Barun Mathema, Tyler S Brown, Caroline Colijn, Joshua L Warren, Ted Cohen
{"title":"Integrating genomic and spatial analyses to describe tuberculosis transmission: a scoping review.","authors":"Yu Lan, Isabel Rancu, Melanie H Chitwood, Benjamin Sobkowiak, Kate Nyhan, Hsien-Ho Lin, Chieh-Yin Wu, Barun Mathema, Tyler S Brown, Caroline Colijn, Joshua L Warren, Ted Cohen","doi":"10.1016/j.lanmic.2025.101094","DOIUrl":null,"url":null,"abstract":"<p><p>Tuberculosis remains a leading cause of infection-related mortality, and efforts to reduce its incidence have been hindered by an incomplete understanding of local Mycobacterium tuberculosis transmission dynamics. Advances in pathogen sequencing and spatial analysis have created new opportunities to map M tuberculosis transmission patterns more precisely. In this scoping review, we searched for studies combining pathogen genetics and location data to analyse the spatial patterns of M tuberculosis transmission and identified 142 studies published between 1994 and 2024. Secular changes in genetic methods were observed, with genome sequencing approaches largely replacing lower-resolution genotyping methods since 2020. The included studies addressed four primary research questions: how are tuberculosis cases and M tuberculosis transmission clusters geographically distributed; do spatially concentrated M tuberculosis clusters exist, and where are these areas located; when spatial concentration occurs, what host, pathogen, or environmental factors contribute to these patterns; and do identifiable relationships exist between the spatial proximity of tuberculosis cases and the genetic similarity of the M tuberculosis isolates infecting these individuals? Collectively, in this Review, we examined the available study data, evaluated the analytical requirements for addressing these questions, and discussed opportunities and challenges for future research. We found that the integration of spatial and genomic data can inform a detailed understanding of local M tuberculosis transmission patterns, but improved study designs and new analytical methods to address gaps in sampling completeness and to integrate additional movement data are needed to fully realise the potential of these tools.</p>","PeriodicalId":46633,"journal":{"name":"Lancet Microbe","volume":" ","pages":"101094"},"PeriodicalIF":20.9000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lancet Microbe","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.lanmic.2025.101094","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Tuberculosis remains a leading cause of infection-related mortality, and efforts to reduce its incidence have been hindered by an incomplete understanding of local Mycobacterium tuberculosis transmission dynamics. Advances in pathogen sequencing and spatial analysis have created new opportunities to map M tuberculosis transmission patterns more precisely. In this scoping review, we searched for studies combining pathogen genetics and location data to analyse the spatial patterns of M tuberculosis transmission and identified 142 studies published between 1994 and 2024. Secular changes in genetic methods were observed, with genome sequencing approaches largely replacing lower-resolution genotyping methods since 2020. The included studies addressed four primary research questions: how are tuberculosis cases and M tuberculosis transmission clusters geographically distributed; do spatially concentrated M tuberculosis clusters exist, and where are these areas located; when spatial concentration occurs, what host, pathogen, or environmental factors contribute to these patterns; and do identifiable relationships exist between the spatial proximity of tuberculosis cases and the genetic similarity of the M tuberculosis isolates infecting these individuals? Collectively, in this Review, we examined the available study data, evaluated the analytical requirements for addressing these questions, and discussed opportunities and challenges for future research. We found that the integration of spatial and genomic data can inform a detailed understanding of local M tuberculosis transmission patterns, but improved study designs and new analytical methods to address gaps in sampling completeness and to integrate additional movement data are needed to fully realise the potential of these tools.
期刊介绍:
The Lancet Microbe is a gold open access journal committed to publishing content relevant to clinical microbiologists worldwide, with a focus on studies that advance clinical understanding, challenge the status quo, and advocate change in health policy.