{"title":"Identification of Ferroptosis-Associated Genes in Primary Open-Angle Glaucoma through Bioinformatics Analysis.","authors":"Dongmei Hong","doi":"10.1615/CritRevEukaryotGeneExpr.2025057767","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to examine ferroptosis-associated genes in primary open-angle glaucoma (POAG) and offer new insights into the underlying disease mechanisms and potential therapeutic approaches. Differentially expressed genes (DEGs) between the POAG and control groups were identified using bioinformatics analysis and subsequently intersected with a ferroptosis gene set to isolate ferroptosis-related DEGs (Ferr DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to examine their biological functions. Core genes were identified through protein-protein interaction (PPI) network and Friends analysis. The diagnostic potential of core Ferr DEGs was assessed using receiver operating characteristic (ROC) curve analysis, while immune cell infiltration was examined using the CIBERSORT algorithm. Additionally, Spearman correlation analysis was used to examine the relationships between the identified genes and immune cell populations. A total of 25 Ferr DEGs were identified, with DDIT4, GDF15, NAMPT, HBA1, and IGFBP7 recognized as key core genes. ROC analysis demonstrated that these genes exhibited high diagnostic accuracy, with an AUC > 0.7. Additionally, the infiltration levels of memory B cells and macrophage_M2 were significantly elevated in POAG tissues compared to the control group. Notably, the core genes revealed significant correlations with various immune cell types. Our findings underscore the involvement of ferroptosis-related genes in POAG pathogenesis and highlight their potential as diagnostic biomarkers and therapeutic targets. Future research should focus on validating these findings in clinical settings and exploring the therapeutic modulation of ferroptosis in POAG management.</p>","PeriodicalId":56317,"journal":{"name":"Critical Reviews in Eukaryotic Gene Expression","volume":"35 4","pages":"15-26"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Eukaryotic Gene Expression","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/CritRevEukaryotGeneExpr.2025057767","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to examine ferroptosis-associated genes in primary open-angle glaucoma (POAG) and offer new insights into the underlying disease mechanisms and potential therapeutic approaches. Differentially expressed genes (DEGs) between the POAG and control groups were identified using bioinformatics analysis and subsequently intersected with a ferroptosis gene set to isolate ferroptosis-related DEGs (Ferr DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to examine their biological functions. Core genes were identified through protein-protein interaction (PPI) network and Friends analysis. The diagnostic potential of core Ferr DEGs was assessed using receiver operating characteristic (ROC) curve analysis, while immune cell infiltration was examined using the CIBERSORT algorithm. Additionally, Spearman correlation analysis was used to examine the relationships between the identified genes and immune cell populations. A total of 25 Ferr DEGs were identified, with DDIT4, GDF15, NAMPT, HBA1, and IGFBP7 recognized as key core genes. ROC analysis demonstrated that these genes exhibited high diagnostic accuracy, with an AUC > 0.7. Additionally, the infiltration levels of memory B cells and macrophage_M2 were significantly elevated in POAG tissues compared to the control group. Notably, the core genes revealed significant correlations with various immune cell types. Our findings underscore the involvement of ferroptosis-related genes in POAG pathogenesis and highlight their potential as diagnostic biomarkers and therapeutic targets. Future research should focus on validating these findings in clinical settings and exploring the therapeutic modulation of ferroptosis in POAG management.
期刊介绍:
Critical ReviewsTM in Eukaryotic Gene Expression presents timely concepts and experimental approaches that are contributing to rapid advances in our mechanistic understanding of gene regulation, organization, and structure within the contexts of biological control and the diagnosis/treatment of disease. The journal provides in-depth critical reviews, on well-defined topics of immediate interest, written by recognized specialists in the field. Extensive literature citations provide a comprehensive information resource.
Reviews are developed from an historical perspective and suggest directions that can be anticipated. Strengths as well as limitations of methodologies and experimental strategies are considered.