H3F3A K27M mutations drive a repressive transcriptome by modulating chromatin accessibility independent of H3K27me3 in Diffuse Midline Glioma.

IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY
Suraj Bhattarai, Faruck L Hakkim, Charles A Day, Florina Grigore, Alyssa Langfald, Igor Entin, Edward H Hinchcliffe, James P Robinson
{"title":"H3F3A K27M mutations drive a repressive transcriptome by modulating chromatin accessibility independent of H3K27me3 in Diffuse Midline Glioma.","authors":"Suraj Bhattarai, Faruck L Hakkim, Charles A Day, Florina Grigore, Alyssa Langfald, Igor Entin, Edward H Hinchcliffe, James P Robinson","doi":"10.1186/s13072-025-00585-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Heterozygous histone H3.3K27M mutation is a primary oncogenic driver of Diffuse Midline Glioma (DMG). H3.3K27M inhibits the Polycomb Repressive Complex 2 (PRC2) methyltransferase activity, leading to global reduction and redistribution of the repressive H3 lysine 27 tri-methylation (H3K27me3). This epigenomic rewiring is thought to promote gliomagenesis, but the precise role of K27M in gene regulation and tumorigenesis remains incompletely understood.</p><p><strong>Results: </strong>We established isogenic DMG patient-derived cell lines using CRISPR-Cas9 editing to create H3.3 wild-type (WT), H3.3K27M, and combinations with EZH2 and EZH1 co-deletion, thereby eliminating PRC2 function and H3K27me3. RNA-seq and ATAC-seq analysis revealed that K27M exerts a novel epigenetic effect independent of PRC2 inhibition. While PRC2 loss led to widespread gene induction including HOX gene clusters, and activation of biological pathways, K27M induced a balanced gene deregulation with an overall repressive effect on pathway activity. Genes uniquely affected by K27M, independent of PRC2 loss, showed concordant changes in chromatin accessibility, with upregulated genes becoming more accessible. Importantly, xenografts of H3.3K27M/EZH1/2 WT cells formed tumors, whereas /EZH1/2 knockout cells did not, demonstrating a PRC2-independent role of K27M in tumorigenesis.</p><p><strong>Conclusion: </strong>Our findings reveal that the H3.3K27M mutation alters chromatin accessibility and uniquely deregulates gene expression independent of H3K27 methylation loss. These PRC2-independent functions of K27M contribute to changes in biological pathway activity and are necessary for tumor development, highlighting novel mechanisms of K27M-driven gliomagenesis.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"18 1","pages":"23"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12032731/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics & Chromatin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13072-025-00585-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Heterozygous histone H3.3K27M mutation is a primary oncogenic driver of Diffuse Midline Glioma (DMG). H3.3K27M inhibits the Polycomb Repressive Complex 2 (PRC2) methyltransferase activity, leading to global reduction and redistribution of the repressive H3 lysine 27 tri-methylation (H3K27me3). This epigenomic rewiring is thought to promote gliomagenesis, but the precise role of K27M in gene regulation and tumorigenesis remains incompletely understood.

Results: We established isogenic DMG patient-derived cell lines using CRISPR-Cas9 editing to create H3.3 wild-type (WT), H3.3K27M, and combinations with EZH2 and EZH1 co-deletion, thereby eliminating PRC2 function and H3K27me3. RNA-seq and ATAC-seq analysis revealed that K27M exerts a novel epigenetic effect independent of PRC2 inhibition. While PRC2 loss led to widespread gene induction including HOX gene clusters, and activation of biological pathways, K27M induced a balanced gene deregulation with an overall repressive effect on pathway activity. Genes uniquely affected by K27M, independent of PRC2 loss, showed concordant changes in chromatin accessibility, with upregulated genes becoming more accessible. Importantly, xenografts of H3.3K27M/EZH1/2 WT cells formed tumors, whereas /EZH1/2 knockout cells did not, demonstrating a PRC2-independent role of K27M in tumorigenesis.

Conclusion: Our findings reveal that the H3.3K27M mutation alters chromatin accessibility and uniquely deregulates gene expression independent of H3K27 methylation loss. These PRC2-independent functions of K27M contribute to changes in biological pathway activity and are necessary for tumor development, highlighting novel mechanisms of K27M-driven gliomagenesis.

在弥漫性中线胶质瘤中,H3F3A K27M突变通过调节独立于H3K27me3的染色质可及性来驱动抑制转录组。
背景:杂合组蛋白H3.3K27M突变是弥漫性中线胶质瘤(DMG)的主要致癌驱动因素。H3.3K27M抑制多梳抑制复合体2 (PRC2)甲基转移酶活性,导致抑制H3赖氨酸27三甲基化(H3K27me3)的全局减少和重新分配。这种表观基因组重组被认为促进了胶质瘤的发生,但K27M在基因调控和肿瘤发生中的确切作用仍不完全清楚。结果:我们利用CRISPR-Cas9编辑技术建立了等基因DMG患者来源的细胞系,构建了H3.3野生型(WT)、H3.3 k27m以及EZH2和EZH1共缺失的组合,从而消除了PRC2功能和H3K27me3。RNA-seq和ATAC-seq分析显示,K27M具有独立于PRC2抑制的新型表观遗传效应。PRC2缺失导致了广泛的基因诱导,包括HOX基因簇,以及生物通路的激活,而K27M诱导了平衡的基因解除调控,对通路活性产生了总体抑制作用。受K27M独特影响的基因,独立于PRC2缺失,显示出染色质可及性的一致变化,上调的基因变得更容易接近。重要的是,H3.3K27M/EZH1/2 WT细胞的异种移植物形成了肿瘤,而/EZH1/2敲除细胞没有形成肿瘤,这表明K27M在肿瘤发生中的作用不依赖于prc2。结论:我们的研究结果表明,H3.3K27M突变改变了染色质的可及性,并独立于H3K27甲基化缺失而独特地解除了基因表达的调控。K27M的这些不依赖prc2的功能有助于改变生物通路活性,并且是肿瘤发展所必需的,突出了K27M驱动胶质瘤形成的新机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Epigenetics & Chromatin
Epigenetics & Chromatin GENETICS & HEREDITY-
CiteScore
7.00
自引率
0.00%
发文量
35
审稿时长
1 months
期刊介绍: Epigenetics & Chromatin is a peer-reviewed, open access, online journal that publishes research, and reviews, providing novel insights into epigenetic inheritance and chromatin-based interactions. The journal aims to understand how gene and chromosomal elements are regulated and their activities maintained during processes such as cell division, differentiation and environmental alteration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信