Bond-selective imaging of 3D cellular nanostructures by interferometric scattering guided stimulated Raman scattering microscopy.

IF 3.2 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2025-04-07 DOI:10.1364/OE.558881
Xingxin Liu, Yihui Zhou, Xiaohui Zhang, Yongqing Zhang, Xiangjie Huang, Wei Yan, Hyeon Jeong Lee, Delong Zhang
{"title":"Bond-selective imaging of 3D cellular nanostructures by interferometric scattering guided stimulated Raman scattering microscopy.","authors":"Xingxin Liu, Yihui Zhou, Xiaohui Zhang, Yongqing Zhang, Xiangjie Huang, Wei Yan, Hyeon Jeong Lee, Delong Zhang","doi":"10.1364/OE.558881","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the molecular composition of nanoscale cellular structures, such as extracellular vesicles and synapses, is critical for unraveling the mechanisms driving diverse biological processes. However, existing techniques face significant challenges: chemical labeling is often impractical, and conventional nanoscale imaging methods lack the specificity to resolve chemical bonds within these structures. To bridge this gap, we present an approach named interferometric scattering-guided stimulated Raman scattering microscopy (igSRS), which integrates the bond-selective capacity of stimulated Raman scattering imaging with the high sensitivity of interferometric scattering microscopy. By achieving a substantially enhanced signal-to-noise ratio, igSRS enables the visualization of chemical heterogeneity within individual extracellular vesicles and captures spectral features of nanostructures, such as synapses, in intact cells. Furthermore, igSRS's intrinsic optical sectioning capability allows for high-resolution, three-dimensional mapping of chemical distributions in complex systems like neurons. With high sensitivity and chemical specificity, igSRS offers transformative potential for a broad range of applications in biological and materials sciences.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"33 7","pages":"14899-14909"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.558881","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the molecular composition of nanoscale cellular structures, such as extracellular vesicles and synapses, is critical for unraveling the mechanisms driving diverse biological processes. However, existing techniques face significant challenges: chemical labeling is often impractical, and conventional nanoscale imaging methods lack the specificity to resolve chemical bonds within these structures. To bridge this gap, we present an approach named interferometric scattering-guided stimulated Raman scattering microscopy (igSRS), which integrates the bond-selective capacity of stimulated Raman scattering imaging with the high sensitivity of interferometric scattering microscopy. By achieving a substantially enhanced signal-to-noise ratio, igSRS enables the visualization of chemical heterogeneity within individual extracellular vesicles and captures spectral features of nanostructures, such as synapses, in intact cells. Furthermore, igSRS's intrinsic optical sectioning capability allows for high-resolution, three-dimensional mapping of chemical distributions in complex systems like neurons. With high sensitivity and chemical specificity, igSRS offers transformative potential for a broad range of applications in biological and materials sciences.

三维细胞纳米结构的键选择成像干涉散射引导受激拉曼散射显微镜。
了解纳米级细胞结构的分子组成,如细胞外囊泡和突触,对于揭示驱动各种生物过程的机制至关重要。然而,现有的技术面临着重大的挑战:化学标记通常是不切实际的,传统的纳米级成像方法缺乏特异性来解决这些结构中的化学键。为了弥补这一空白,我们提出了一种名为干涉散射引导受激拉曼散射显微镜(igSRS)的方法,该方法将受激拉曼散射成像的键选择能力与干涉散射显微镜的高灵敏度结合在一起。通过实现显著增强的信噪比,igSRS能够可视化单个细胞外囊泡内的化学异质性,并捕获完整细胞中纳米结构(如突触)的光谱特征。此外,igSRS固有的光学切片能力允许对神经元等复杂系统中的化学分布进行高分辨率的三维映射。igSRS具有高灵敏度和化学特异性,为生物和材料科学的广泛应用提供了变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信