{"title":"Learning Chemotherapy Drug Action via Universal Physics-Informed Neural Networks.","authors":"Lena Podina, Ali Ghodsi, Mohammad Kohandel","doi":"10.1007/s11095-025-03858-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Quantitative systems pharmacology (QSP) is widely used to assess drug effects and toxicity before the drug goes to clinical trial. However, significant manual distillation of the literature is needed in order to construct a QSP model. Parameters may need to be fit, and simplifying assumptions of the model need to be made. In this work, we apply Universal Physics-Informed Neural Networks (UPINNs) to learn unknown components of various differential equations that model chemotherapy pharmacodynamics.</p><p><strong>Methods: </strong>Using UPINNs, we learn three commonly employed chemotherapeutic drug actions (log-kill, Norton-Simon, and <math><msub><mi>E</mi> <mo>max</mo></msub> </math> ) from synthetic data. Then, we use the UPINN method to fit the parameters for several synthetic datasets simultaneously. Finally, we learn the net proliferation rate in a model of doxorubicin (a chemotherapeutic) pharmacodynamics.</p><p><strong>Results: </strong>We show that the UPINN can successfully learn the hidden terms and unknown parameters in a variety of differential equations (with differing time and variable scales) that model the effect of chemotherapeutics on cancer cells.</p><p><strong>Conclusions: </strong>As the examples we study are only toy examples, we highlight the usefulness of UPINNs in learning unknown terms in pharmacodynamic and pharmacokinetic models. UPINNs can be used to find these terms and analyze them further to understand new chemotherapeutics and biological mechanisms that interact with them.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":"42 4","pages":"593-612"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-025-03858-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Quantitative systems pharmacology (QSP) is widely used to assess drug effects and toxicity before the drug goes to clinical trial. However, significant manual distillation of the literature is needed in order to construct a QSP model. Parameters may need to be fit, and simplifying assumptions of the model need to be made. In this work, we apply Universal Physics-Informed Neural Networks (UPINNs) to learn unknown components of various differential equations that model chemotherapy pharmacodynamics.
Methods: Using UPINNs, we learn three commonly employed chemotherapeutic drug actions (log-kill, Norton-Simon, and ) from synthetic data. Then, we use the UPINN method to fit the parameters for several synthetic datasets simultaneously. Finally, we learn the net proliferation rate in a model of doxorubicin (a chemotherapeutic) pharmacodynamics.
Results: We show that the UPINN can successfully learn the hidden terms and unknown parameters in a variety of differential equations (with differing time and variable scales) that model the effect of chemotherapeutics on cancer cells.
Conclusions: As the examples we study are only toy examples, we highlight the usefulness of UPINNs in learning unknown terms in pharmacodynamic and pharmacokinetic models. UPINNs can be used to find these terms and analyze them further to understand new chemotherapeutics and biological mechanisms that interact with them.
期刊介绍:
Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to:
-(pre)formulation engineering and processing-
computational biopharmaceutics-
drug delivery and targeting-
molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)-
pharmacokinetics, pharmacodynamics and pharmacogenetics.
Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.