Reina J Veenhof, Alexander H McGrath, Curtis Champion, Symon A Dworjanyn, Ezequiel M Marzinelli, Melinda A Coleman
{"title":"The role of microbiota in kelp gametophyte development and resilience to thermal stress.","authors":"Reina J Veenhof, Alexander H McGrath, Curtis Champion, Symon A Dworjanyn, Ezequiel M Marzinelli, Melinda A Coleman","doi":"10.1111/jpy.70018","DOIUrl":null,"url":null,"abstract":"<p><p>Ocean warming is driving profound changes in the ecology of marine habitat formers such as kelps, with negative implications for the biodiversity and ecosystem services they support. Thermal stress can disturb associated microbiota that are essential to the healthy functioning of kelp, but little is known about how this process influences early-life stages. Because kelps have a biphasic life cycle, thermal stress dynamics of adult sporophyte microbiota may not reflect those of the free-living haploid gametophyte. We investigated the role of microbial disruption under thermal stress on gametophytes of the kelp Ecklonia radiata and compared sporophyte and gametophyte microbiota. The microbiota of gametophytes changed significantly when the microbiome was disrupted and under increased temperature (26°C), in which putative generalist bacterial taxa proliferated and bacterial families associated with nitrogen fixation decreased. Concurrently, the survival of gametophytes decreased to <10%, and surviving gametophytes did not become fertile when the microbiome was disrupted. The length of gametophytes decreased under both microbial disruption and thermal stress. Taken together, this suggests that the associated microbiota of Ecklonia gametophytes is important for their survival, fertility, and response to warming. Gametophyte and parental sporophyte microbiota were also distinct from the water column but not each other, suggesting vertical transmission of microbiota from one life stage to the next. This study furthers our understanding of the role of microbiota in gametophyte stress tolerance as well as the acquisition of microbiota, which may prove vital in protecting and increasing the stress resilience of these foundation species.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jpy.70018","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ocean warming is driving profound changes in the ecology of marine habitat formers such as kelps, with negative implications for the biodiversity and ecosystem services they support. Thermal stress can disturb associated microbiota that are essential to the healthy functioning of kelp, but little is known about how this process influences early-life stages. Because kelps have a biphasic life cycle, thermal stress dynamics of adult sporophyte microbiota may not reflect those of the free-living haploid gametophyte. We investigated the role of microbial disruption under thermal stress on gametophytes of the kelp Ecklonia radiata and compared sporophyte and gametophyte microbiota. The microbiota of gametophytes changed significantly when the microbiome was disrupted and under increased temperature (26°C), in which putative generalist bacterial taxa proliferated and bacterial families associated with nitrogen fixation decreased. Concurrently, the survival of gametophytes decreased to <10%, and surviving gametophytes did not become fertile when the microbiome was disrupted. The length of gametophytes decreased under both microbial disruption and thermal stress. Taken together, this suggests that the associated microbiota of Ecklonia gametophytes is important for their survival, fertility, and response to warming. Gametophyte and parental sporophyte microbiota were also distinct from the water column but not each other, suggesting vertical transmission of microbiota from one life stage to the next. This study furthers our understanding of the role of microbiota in gametophyte stress tolerance as well as the acquisition of microbiota, which may prove vital in protecting and increasing the stress resilience of these foundation species.
期刊介绍:
The Journal of Phycology was founded in 1965 by the Phycological Society of America. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, taxonomist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.
All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, acquaculturist, systematist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.