The role of microbiota in kelp gametophyte development and resilience to thermal stress.

IF 2.8 3区 生物学 Q1 MARINE & FRESHWATER BIOLOGY
Reina J Veenhof, Alexander H McGrath, Curtis Champion, Symon A Dworjanyn, Ezequiel M Marzinelli, Melinda A Coleman
{"title":"The role of microbiota in kelp gametophyte development and resilience to thermal stress.","authors":"Reina J Veenhof, Alexander H McGrath, Curtis Champion, Symon A Dworjanyn, Ezequiel M Marzinelli, Melinda A Coleman","doi":"10.1111/jpy.70018","DOIUrl":null,"url":null,"abstract":"<p><p>Ocean warming is driving profound changes in the ecology of marine habitat formers such as kelps, with negative implications for the biodiversity and ecosystem services they support. Thermal stress can disturb associated microbiota that are essential to the healthy functioning of kelp, but little is known about how this process influences early-life stages. Because kelps have a biphasic life cycle, thermal stress dynamics of adult sporophyte microbiota may not reflect those of the free-living haploid gametophyte. We investigated the role of microbial disruption under thermal stress on gametophytes of the kelp Ecklonia radiata and compared sporophyte and gametophyte microbiota. The microbiota of gametophytes changed significantly when the microbiome was disrupted and under increased temperature (26°C), in which putative generalist bacterial taxa proliferated and bacterial families associated with nitrogen fixation decreased. Concurrently, the survival of gametophytes decreased to <10%, and surviving gametophytes did not become fertile when the microbiome was disrupted. The length of gametophytes decreased under both microbial disruption and thermal stress. Taken together, this suggests that the associated microbiota of Ecklonia gametophytes is important for their survival, fertility, and response to warming. Gametophyte and parental sporophyte microbiota were also distinct from the water column but not each other, suggesting vertical transmission of microbiota from one life stage to the next. This study furthers our understanding of the role of microbiota in gametophyte stress tolerance as well as the acquisition of microbiota, which may prove vital in protecting and increasing the stress resilience of these foundation species.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jpy.70018","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ocean warming is driving profound changes in the ecology of marine habitat formers such as kelps, with negative implications for the biodiversity and ecosystem services they support. Thermal stress can disturb associated microbiota that are essential to the healthy functioning of kelp, but little is known about how this process influences early-life stages. Because kelps have a biphasic life cycle, thermal stress dynamics of adult sporophyte microbiota may not reflect those of the free-living haploid gametophyte. We investigated the role of microbial disruption under thermal stress on gametophytes of the kelp Ecklonia radiata and compared sporophyte and gametophyte microbiota. The microbiota of gametophytes changed significantly when the microbiome was disrupted and under increased temperature (26°C), in which putative generalist bacterial taxa proliferated and bacterial families associated with nitrogen fixation decreased. Concurrently, the survival of gametophytes decreased to <10%, and surviving gametophytes did not become fertile when the microbiome was disrupted. The length of gametophytes decreased under both microbial disruption and thermal stress. Taken together, this suggests that the associated microbiota of Ecklonia gametophytes is important for their survival, fertility, and response to warming. Gametophyte and parental sporophyte microbiota were also distinct from the water column but not each other, suggesting vertical transmission of microbiota from one life stage to the next. This study furthers our understanding of the role of microbiota in gametophyte stress tolerance as well as the acquisition of microbiota, which may prove vital in protecting and increasing the stress resilience of these foundation species.

微生物群在海带配子体发育和热应激恢复中的作用。
海洋变暖正在推动海带等海洋栖息地形成者的生态发生深刻变化,对它们所支持的生物多样性和生态系统服务产生负面影响。热应激会干扰相关的微生物群,这些微生物群对海带的健康功能至关重要,但人们对这一过程如何影响生命早期阶段知之甚少。由于海带具有双相生命周期,成体孢子菌菌群的热胁迫动态可能不能反映单倍体配子体的热胁迫动态。研究了热胁迫下微生物破坏对辐射褐藻配子体的影响,并比较了孢子体和配子体的微生物群。当温度升高(26°C)时,配子体的微生物群发生显著变化,假定的多能细菌类群增殖,与固氮相关的细菌科减少。同时,配子体的存活率下降到
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Phycology
Journal of Phycology 生物-海洋与淡水生物学
CiteScore
6.50
自引率
3.40%
发文量
69
审稿时长
2 months
期刊介绍: The Journal of Phycology was founded in 1965 by the Phycological Society of America. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, taxonomist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, acquaculturist, systematist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信