Kirtikumar R Kondhare, Amey J Bhide, Anjan K Banerjee
{"title":"Mobile RNAs and proteins: impacts on plant growth and productivity.","authors":"Kirtikumar R Kondhare, Amey J Bhide, Anjan K Banerjee","doi":"10.1093/jxb/eraf185","DOIUrl":null,"url":null,"abstract":"<p><p>Short- and long-distance mobile signals (mobile RNAs and proteins) are integral parts of the local and systemic communications that coordinate various physiological processes at the whole-plant level and have far-reaching impacts on plant productivity. In this review, we aim to provide a comprehensive description of the integral roles of these mobile signals in controlling phenotypic traits and plant productivity. We describe how key mobile RNAs (mRNAs, small RNAs, and long non-coding RNAs) and proteins (including RNA-binding proteins) function as vital regulators of multi-faceted aspects of phenotypic traits that ultimately govern plant productivity, such as the formation of the shoot apical meristem, leaf morphology, root architecture, flowering, ripening of fleshy fruits, tuberization, crop yield, and abiotic stress responses. We also describe recent advances in the study of macromolecular transport mechanisms, such as cyclophilin-mediated transport and extracellular vesicle-based signal delivery, as well as the identification of novel signature motifs on mobile RNAs. In addition, we consider the discovery of new mobile signals and highlight how these signals can potentially be explored with advanced biotechnological interventions, virus-induced flowering, genome-editing tools, and emerging breeding approaches (e.g. the xenia-based mobile RNA delivery system for fleshy fruits) with the aim of designing strategies for enhancing valuable phenotypic traits and improving plant productivity.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"3927-3942"},"PeriodicalIF":5.7000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf185","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Short- and long-distance mobile signals (mobile RNAs and proteins) are integral parts of the local and systemic communications that coordinate various physiological processes at the whole-plant level and have far-reaching impacts on plant productivity. In this review, we aim to provide a comprehensive description of the integral roles of these mobile signals in controlling phenotypic traits and plant productivity. We describe how key mobile RNAs (mRNAs, small RNAs, and long non-coding RNAs) and proteins (including RNA-binding proteins) function as vital regulators of multi-faceted aspects of phenotypic traits that ultimately govern plant productivity, such as the formation of the shoot apical meristem, leaf morphology, root architecture, flowering, ripening of fleshy fruits, tuberization, crop yield, and abiotic stress responses. We also describe recent advances in the study of macromolecular transport mechanisms, such as cyclophilin-mediated transport and extracellular vesicle-based signal delivery, as well as the identification of novel signature motifs on mobile RNAs. In addition, we consider the discovery of new mobile signals and highlight how these signals can potentially be explored with advanced biotechnological interventions, virus-induced flowering, genome-editing tools, and emerging breeding approaches (e.g. the xenia-based mobile RNA delivery system for fleshy fruits) with the aim of designing strategies for enhancing valuable phenotypic traits and improving plant productivity.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.