Transcranial Magnetic Stimulation Alleviates Spatial Learning and Memory Impairment by Inhibiting the Expression of SARM1 in Rats with Cerebral Ischemia-Reperfusion Injury.

IF 3.3 4区 医学 Q2 NEUROSCIENCES
Linlin Jiang, Yule Wang, Yingxi He, Ying Wang, Hao Liu, Yu Chen, Jingxi Ma, Ying Yin, Lingchuan Niu
{"title":"Transcranial Magnetic Stimulation Alleviates Spatial Learning and Memory Impairment by Inhibiting the Expression of SARM1 in Rats with Cerebral Ischemia-Reperfusion Injury.","authors":"Linlin Jiang, Yule Wang, Yingxi He, Ying Wang, Hao Liu, Yu Chen, Jingxi Ma, Ying Yin, Lingchuan Niu","doi":"10.1007/s12017-025-08856-y","DOIUrl":null,"url":null,"abstract":"<p><p>The cognitive impairment resulting from stroke is purported to be associated with impaired neuronal structure and function. Transcranial Magnetic Stimulation (TMS) modulates neuronal or cortical excitability and inhibits cellular apoptosis, thereby enhancing spatial learning and memory in middle cerebral artery occlusion/reperfusion (MCAO/R) rats. In this study, we aimed to investigate whether Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1), a pivotal Toll-like receptor adaptor molecule and its related mechanisms are involved in the ameliorating effect of TMS on cognitive function post-cerebral ischemia. We evaluated hippocampal injury in MCAO/R rats after one week of treatment with 10-Hz TMS at an early stage. The effect of SARM1 was more effectively assessed through lentivirus-mediated SARM1 overexpression. Various techniques, including FJB staining, HE staining, western blot, immunofluorescence, imunohistochemistry, and transmission electron microscopy, were employed to investigate the molecular biological and morphological alterations of axons, myelin sheaths and apoptosis in the hippocampus. Ultimately, Morris Water Maze was employed to evaluate the spatial learning and memory capabilities of the rats. We observed that TMS significantly reduced the levels of SARM1, NF-κB, and Bax following MCAO/R, while elevating the levels of HSP70, Bcl-2, GAP-43, NF-200, BDNF, and MBP. Overexpression of SARM1 not only reversed the neuroprotective effects induced by TMS but also exacerbated spatial learning and memory impairments in rats. Our results demonstrate that TMS mitigates hippocampal cell apoptosis via the SARM1/HSP70/NF-κB signaling pathway, thus fostering the regeneration of hippocampal axons and myelin sheaths, as well as the improvement of spatial learning and memory.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":"27 1","pages":"31"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-025-08856-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The cognitive impairment resulting from stroke is purported to be associated with impaired neuronal structure and function. Transcranial Magnetic Stimulation (TMS) modulates neuronal or cortical excitability and inhibits cellular apoptosis, thereby enhancing spatial learning and memory in middle cerebral artery occlusion/reperfusion (MCAO/R) rats. In this study, we aimed to investigate whether Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1), a pivotal Toll-like receptor adaptor molecule and its related mechanisms are involved in the ameliorating effect of TMS on cognitive function post-cerebral ischemia. We evaluated hippocampal injury in MCAO/R rats after one week of treatment with 10-Hz TMS at an early stage. The effect of SARM1 was more effectively assessed through lentivirus-mediated SARM1 overexpression. Various techniques, including FJB staining, HE staining, western blot, immunofluorescence, imunohistochemistry, and transmission electron microscopy, were employed to investigate the molecular biological and morphological alterations of axons, myelin sheaths and apoptosis in the hippocampus. Ultimately, Morris Water Maze was employed to evaluate the spatial learning and memory capabilities of the rats. We observed that TMS significantly reduced the levels of SARM1, NF-κB, and Bax following MCAO/R, while elevating the levels of HSP70, Bcl-2, GAP-43, NF-200, BDNF, and MBP. Overexpression of SARM1 not only reversed the neuroprotective effects induced by TMS but also exacerbated spatial learning and memory impairments in rats. Our results demonstrate that TMS mitigates hippocampal cell apoptosis via the SARM1/HSP70/NF-κB signaling pathway, thus fostering the regeneration of hippocampal axons and myelin sheaths, as well as the improvement of spatial learning and memory.

经颅磁刺激通过抑制SARM1表达减轻脑缺血再灌注损伤大鼠空间学习记忆功能障碍
中风导致的认知障碍被认为与神经元结构和功能受损有关。经颅磁刺激(Transcranial Magnetic Stimulation, TMS)可调节大脑中动脉闭塞/再灌注(MCAO/R)大鼠神经元或皮质兴奋性,抑制细胞凋亡,从而增强空间学习记忆能力。本研究旨在探讨经颅磁刺激对脑缺血后认知功能的改善是否与无菌α和Toll/白介素受体基序蛋白1 (Toll/interleukin receptor motif-containing protein 1, SARM1)及其相关机制有关。我们对MCAO/R大鼠早期10-Hz经颅磁刺激1周后的海马损伤进行了评估。通过慢病毒介导的SARM1过表达,可以更有效地评估SARM1的作用。采用FJB染色、HE染色、western blot、免疫荧光、免疫组织化学、透射电镜等技术观察海马轴突、髓鞘和细胞凋亡的分子生物学和形态学变化。最后采用Morris水迷宫法评价大鼠的空间学习记忆能力。我们观察到TMS显著降低MCAO/R后的SARM1、NF-κB和Bax水平,同时升高HSP70、Bcl-2、GAP-43、NF-200、BDNF和MBP水平。SARM1的过表达不仅逆转了经颅磁刺激诱导的神经保护作用,而且加重了大鼠的空间学习和记忆障碍。我们的研究结果表明,经颅磁刺激通过SARM1/HSP70/NF-κB信号通路减轻海马细胞凋亡,从而促进海马轴突和髓鞘的再生,提高空间学习和记忆能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroMolecular Medicine
NeuroMolecular Medicine 医学-神经科学
CiteScore
7.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信