Comparative analysis of nnU-Net and Auto3Dseg for fat and fibroglandular tissue segmentation in MRI.

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2025-03-01 Epub Date: 2025-04-16 DOI:10.1117/1.JMI.12.2.024005
Yasna Forghani, Rafaela Timóteo, Tiago Marques, Nuno Loução, Maria João Cardoso, Fátima Cardoso, Mario Figueiredo, Pedro Gouveia, João Santinha
{"title":"Comparative analysis of nnU-Net and Auto3Dseg for fat and fibroglandular tissue segmentation in MRI.","authors":"Yasna Forghani, Rafaela Timóteo, Tiago Marques, Nuno Loução, Maria João Cardoso, Fátima Cardoso, Mario Figueiredo, Pedro Gouveia, João Santinha","doi":"10.1117/1.JMI.12.2.024005","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Breast cancer, the most common cancer type among women worldwide, requires early detection and accurate diagnosis for improved treatment outcomes. Segmenting fat and fibroglandular tissue (FGT) in magnetic resonance imaging (MRI) is essential for creating volumetric models, enhancing surgical workflow, and improving clinical outcomes. Manual segmentation is time-consuming and subjective, prompting the development of automated deep-learning algorithms to perform this task. However, configuring these algorithms for 3D medical images is challenging due to variations in image features and preprocessing distortions. Automated machine learning (AutoML) frameworks automate model selection, hyperparameter tuning, and architecture optimization, offering a promising solution by reducing reliance on manual intervention and expert knowledge.</p><p><strong>Approach: </strong>We compare nnU-Net and Auto3Dseg, two AutoML frameworks, in segmenting fat and FGT on T1-weighted MRI images from the Duke breast MRI dataset (100 patients). We used threefold cross-validation, employing the Dice similarity coefficient (DSC) and Hausdorff distance (HD) metrics for evaluation. The <math><mrow><mi>F</mi></mrow> </math> -test and Tukey honestly significant difference analysis were used to assess statistical differences across methods.</p><p><strong>Results: </strong>nnU-Net achieved DSC scores of <math><mrow><mn>0.946</mn> <mo>±</mo> <mn>0.026</mn></mrow> </math> (fat) and <math><mrow><mn>0.872</mn> <mo>±</mo> <mn>0.070</mn></mrow> </math> (FGT), whereas Auto3DSeg achieved <math><mrow><mn>0.940</mn> <mo>±</mo> <mn>0.026</mn></mrow> </math> (fat) and <math><mrow><mn>0.871</mn> <mo>±</mo> <mn>0.074</mn></mrow> </math> (FGT). Significant differences in fat HD ( <math><mrow><mi>F</mi> <mo>=</mo> <mn>6.3020</mn></mrow> </math> , <math><mrow><mi>p</mi> <mo><</mo> <mn>0.001</mn></mrow> </math> ) originated from the full resolution and the 3D cascade U-Net. No evidence of significant differences was found in FGT HD or DSC metrics.</p><p><strong>Conclusions: </strong>Ensemble approaches of Auto3Dseg and nnU-Net demonstrated comparable performance in segmenting fat and FGT on breast MRI. The significant differences in fat HD underscore the importance of boundary-focused metrics in evaluating segmentation methods.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 2","pages":"024005"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12003052/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.2.024005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Breast cancer, the most common cancer type among women worldwide, requires early detection and accurate diagnosis for improved treatment outcomes. Segmenting fat and fibroglandular tissue (FGT) in magnetic resonance imaging (MRI) is essential for creating volumetric models, enhancing surgical workflow, and improving clinical outcomes. Manual segmentation is time-consuming and subjective, prompting the development of automated deep-learning algorithms to perform this task. However, configuring these algorithms for 3D medical images is challenging due to variations in image features and preprocessing distortions. Automated machine learning (AutoML) frameworks automate model selection, hyperparameter tuning, and architecture optimization, offering a promising solution by reducing reliance on manual intervention and expert knowledge.

Approach: We compare nnU-Net and Auto3Dseg, two AutoML frameworks, in segmenting fat and FGT on T1-weighted MRI images from the Duke breast MRI dataset (100 patients). We used threefold cross-validation, employing the Dice similarity coefficient (DSC) and Hausdorff distance (HD) metrics for evaluation. The F -test and Tukey honestly significant difference analysis were used to assess statistical differences across methods.

Results: nnU-Net achieved DSC scores of 0.946 ± 0.026 (fat) and 0.872 ± 0.070 (FGT), whereas Auto3DSeg achieved 0.940 ± 0.026 (fat) and 0.871 ± 0.074 (FGT). Significant differences in fat HD ( F = 6.3020 , p < 0.001 ) originated from the full resolution and the 3D cascade U-Net. No evidence of significant differences was found in FGT HD or DSC metrics.

Conclusions: Ensemble approaches of Auto3Dseg and nnU-Net demonstrated comparable performance in segmenting fat and FGT on breast MRI. The significant differences in fat HD underscore the importance of boundary-focused metrics in evaluating segmentation methods.

nnU-Net和Auto3Dseg在MRI脂肪和纤维腺组织分割中的比较分析。
目的:乳腺癌是全球女性中最常见的癌症类型,需要早期发现和准确诊断以改善治疗效果。在磁共振成像(MRI)中分割脂肪和纤维腺组织(FGT)对于创建体积模型、增强手术工作流程和改善临床结果至关重要。手动分割是耗时和主观的,这促使了自动化深度学习算法的发展来执行这项任务。然而,由于图像特征和预处理失真的变化,为3D医学图像配置这些算法具有挑战性。自动化机器学习(AutoML)框架自动化模型选择、超参数调优和架构优化,通过减少对人工干预和专家知识的依赖,提供了一个有前途的解决方案。方法:我们比较了nnU-Net和Auto3Dseg这两种AutoML框架在杜克乳腺MRI数据集(100例患者)的t1加权MRI图像上分割脂肪和FGT的效果。我们使用了三重交叉验证,采用Dice相似系数(DSC)和Hausdorff距离(HD)指标进行评估。采用F检验和Tukey显著性差异分析来评估不同方法之间的统计学差异。结果:nnU-Net的DSC评分为0.946±0.026(脂肪)和0.872±0.070 (FGT), Auto3DSeg的DSC评分为0.940±0.026(脂肪)和0.871±0.074 (FGT)。脂肪HD的显著差异(F = 6.3020, p 0.001)源于全分辨率和3D级联U-Net。在FGT HD或DSC指标中没有发现显著差异的证据。结论:Auto3Dseg和nnU-Net的集成方法在乳腺MRI上分割脂肪和FGT方面表现出相当的性能。脂肪HD的显著差异强调了以边界为中心的指标在评估分割方法中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信