Zhenkai Zhang, Zhiwei Bao, Wenyong Ma, Peifang Sun
{"title":"Stochastic Semi-active Control Method of Structure Based on Magnetorheological Dampers Considering Time Delay.","authors":"Zhenkai Zhang, Zhiwei Bao, Wenyong Ma, Peifang Sun","doi":"10.3791/68259","DOIUrl":null,"url":null,"abstract":"<p><p>The use of Magnetorheological (MR) dampers in semi-active control systems faces a key challenge: time delay caused by feedback processes, which reduces the reliability of civil engineering structures under stochastic excitations. This paper proposes a Stochastic Optimal Semi-active Control method with time delay compensation (SOSC-PSO), leveraging the Physical Stochastic Optimal control theory (PSO) to address this issue and maintain structural reliability. The proposed method derives the semi-active control force as a function of both current and previous states, compensating for time delays in the control process. To optimize control effectiveness, key parameters are tuned based on a reliability criterion for the system. Validation analyses on single-degree-of-freedom and multi-degree-of-freedom structures under stochastic seismic excitations show that time delays significantly impair the performance of MR dampers. However, the SOSC-PSO method with time delay compensation significantly improves control effectiveness, and with optimized parameters, it enhances the reliability of the structural control system beyond methods without parameter optimization.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 218","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/68259","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The use of Magnetorheological (MR) dampers in semi-active control systems faces a key challenge: time delay caused by feedback processes, which reduces the reliability of civil engineering structures under stochastic excitations. This paper proposes a Stochastic Optimal Semi-active Control method with time delay compensation (SOSC-PSO), leveraging the Physical Stochastic Optimal control theory (PSO) to address this issue and maintain structural reliability. The proposed method derives the semi-active control force as a function of both current and previous states, compensating for time delays in the control process. To optimize control effectiveness, key parameters are tuned based on a reliability criterion for the system. Validation analyses on single-degree-of-freedom and multi-degree-of-freedom structures under stochastic seismic excitations show that time delays significantly impair the performance of MR dampers. However, the SOSC-PSO method with time delay compensation significantly improves control effectiveness, and with optimized parameters, it enhances the reliability of the structural control system beyond methods without parameter optimization.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.