Marie Demonceaux PhD , Oscar Werner MD , Olivier Cadeau PsyD, PhD , Amanda Guerra PsyD, PhD , Arnaud Roy PsyD, PhD , Véronique Ferchaud-Roucher PhD , Alban-Elouen Baruteau MD, PhD
{"title":"Congenital Heart Diseases and Neurodevelopmental Disorders","authors":"Marie Demonceaux PhD , Oscar Werner MD , Olivier Cadeau PsyD, PhD , Amanda Guerra PsyD, PhD , Arnaud Roy PsyD, PhD , Véronique Ferchaud-Roucher PhD , Alban-Elouen Baruteau MD, PhD","doi":"10.1016/j.jacbts.2025.01.022","DOIUrl":null,"url":null,"abstract":"<div><div>Congenital heart disease (CHD) is the primary cause of birth defects, affecting 9 per 1,000 live births. Up to 50% of them will develop neurodevelopmental disorders, two-thirds of which being unexplained by postnatal risk factors. Recent advances suggest a triangular relationship between the placenta and the fetal heart and brain in CHD, consistent with the Developmental Origins of Health and Disease hypothesis, ie, the in utero programming of early and later-in-life noncommunicable cardiometabolic and mental diseases. The current review provides comprehensive evidence of placental, cardiac, and cerebral tissues interactions, and details how placental dysregulation may affect vasculogenesis, angiogenesis and neural tube closure, hemodynamics, energy supply, endocrine function, and epigenetic regulation of the developing heart and brain. Future studies should include placental research, since identifying placental biomarkers would allow early identification of CHD infants at higher risk for neurodevelopmental disorders, leading to targeted preventive personalized interventions.</div></div>","PeriodicalId":14831,"journal":{"name":"JACC: Basic to Translational Science","volume":"10 8","pages":"Article 101251"},"PeriodicalIF":8.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACC: Basic to Translational Science","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452302X25000683","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Congenital heart disease (CHD) is the primary cause of birth defects, affecting 9 per 1,000 live births. Up to 50% of them will develop neurodevelopmental disorders, two-thirds of which being unexplained by postnatal risk factors. Recent advances suggest a triangular relationship between the placenta and the fetal heart and brain in CHD, consistent with the Developmental Origins of Health and Disease hypothesis, ie, the in utero programming of early and later-in-life noncommunicable cardiometabolic and mental diseases. The current review provides comprehensive evidence of placental, cardiac, and cerebral tissues interactions, and details how placental dysregulation may affect vasculogenesis, angiogenesis and neural tube closure, hemodynamics, energy supply, endocrine function, and epigenetic regulation of the developing heart and brain. Future studies should include placental research, since identifying placental biomarkers would allow early identification of CHD infants at higher risk for neurodevelopmental disorders, leading to targeted preventive personalized interventions.
期刊介绍:
JACC: Basic to Translational Science is an open access journal that is part of the renowned Journal of the American College of Cardiology (JACC). It focuses on advancing the field of Translational Cardiovascular Medicine and aims to accelerate the translation of new scientific discoveries into therapies that improve outcomes for patients with or at risk for Cardiovascular Disease. The journal covers thematic areas such as pre-clinical research, clinical trials, personalized medicine, novel drugs, devices, and biologics, proteomics, genomics, and metabolomics, as well as early phase clinical trial methodology.