BCOR and ZC3H12A suppress a core stemness program in exhausted CD8+ T cells.

IF 12.6 1区 医学 Q1 IMMUNOLOGY
Journal of Experimental Medicine Pub Date : 2025-08-04 Epub Date: 2025-05-06 DOI:10.1084/jem.20241133
Jing Xu, Zeran Jia, Xiaocui Zhao, Lixia Wang, Gang Jin, Zhuoyang Li, Na Yin, Yinqing Li, Min Peng
{"title":"BCOR and ZC3H12A suppress a core stemness program in exhausted CD8+ T cells.","authors":"Jing Xu, Zeran Jia, Xiaocui Zhao, Lixia Wang, Gang Jin, Zhuoyang Li, Na Yin, Yinqing Li, Min Peng","doi":"10.1084/jem.20241133","DOIUrl":null,"url":null,"abstract":"<p><p>In chronic viral infections, sustained CD8+ T cell response relies on TCF1+ precursor-exhausted T cells (TPEX) exhibiting stem-like properties. TPEX self-renew and respond to PD-1 blockade, underscoring their paramount importance. However, strategies for effectively augmenting TPEX remain limited. Here, we demonstrate that ZC3H12A deficiency initiates a stemness program in TPEX but also increases cell death, whereas BCOR deficiency predominantly promotes TPEX proliferation. Consequently, co-targeting of both BCOR and ZC3H12A imparts exceptional stemness and functionality to TPEX, thereby enhancing viral control. Mechanistically, BCOR and ZC3H12A collaboratively suppress a core stemness program in TPEX characterized by heightened expression of ∼216 factors. While TCF1 plays a role, this core stemness program relies on novel factors, including PDZK1IP1, IFIT3, PIM2, LTB, and POU2F2. Crucially, overexpressing POU2F2 robustly boosts TPEX and enhances antiviral immunity. Thus, a core stemness program exists in exhausted T cells, jointly repressed by BCOR and ZC3H12A, robustly controlling TPEX differentiation and providing new targets for addressing T cell exhaustion.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 8","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12054362/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20241133","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In chronic viral infections, sustained CD8+ T cell response relies on TCF1+ precursor-exhausted T cells (TPEX) exhibiting stem-like properties. TPEX self-renew and respond to PD-1 blockade, underscoring their paramount importance. However, strategies for effectively augmenting TPEX remain limited. Here, we demonstrate that ZC3H12A deficiency initiates a stemness program in TPEX but also increases cell death, whereas BCOR deficiency predominantly promotes TPEX proliferation. Consequently, co-targeting of both BCOR and ZC3H12A imparts exceptional stemness and functionality to TPEX, thereby enhancing viral control. Mechanistically, BCOR and ZC3H12A collaboratively suppress a core stemness program in TPEX characterized by heightened expression of ∼216 factors. While TCF1 plays a role, this core stemness program relies on novel factors, including PDZK1IP1, IFIT3, PIM2, LTB, and POU2F2. Crucially, overexpressing POU2F2 robustly boosts TPEX and enhances antiviral immunity. Thus, a core stemness program exists in exhausted T cells, jointly repressed by BCOR and ZC3H12A, robustly controlling TPEX differentiation and providing new targets for addressing T cell exhaustion.

BCOR和ZC3H12A抑制枯竭的CD8+ T细胞的核心干细胞程序。
在慢性病毒感染中,持续的CD8+ T细胞应答依赖于表现出干细胞样特性的TCF1+前体耗尽T细胞(TPEX)。TPEX自我更新并对PD-1阻断作出反应,强调了它们的首要重要性。然而,有效增加TPEX的策略仍然有限。在这里,我们证明了ZC3H12A缺陷启动了TPEX的干细胞程序,但也增加了细胞死亡,而BCOR缺陷主要促进TPEX增殖。因此,BCOR和ZC3H12A的共同靶向赋予TPEX特殊的干性和功能,从而增强病毒控制。在机制上,BCOR和ZC3H12A协同抑制TPEX的核心干性程序,其特征是提高了~ 216个因子的表达。虽然TCF1发挥了作用,但这个核心的干细胞程序依赖于新的因子,包括PDZK1IP1、IFIT3、PIM2、LTB和POU2F2。重要的是,过表达POU2F2可以增强TPEX和抗病毒免疫。因此,枯竭的T细胞中存在一个核心的干细胞程序,由BCOR和ZC3H12A共同抑制,稳健地控制TPEX分化,为解决T细胞枯竭提供了新的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
1.30%
发文量
189
审稿时长
3-8 weeks
期刊介绍: Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field. Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions. Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信