{"title":"Weak, specific chemical interactions dictate barnase stability in diverse cellular environments.","authors":"Ume Tahir, Caitlin M Davis","doi":"10.1002/pro.70128","DOIUrl":null,"url":null,"abstract":"<p><p>It is well-established that in vitro measurements do not reflect protein behaviors in-cell, where macromolecular crowding and chemical interactions modulate protein stability and kinetics. Recent work suggests that peptides and small proteins experience the cellular environment differently from larger proteins, as their small sizes leave them primarily susceptible to chemical interactions. Here, we investigate this principle in diverse cellular environments, different intracellular compartments and host organisms. Our small protein folding model is barnase, a bacterial ribonuclease that has been extensively characterized in vitro. Using fast relaxation imaging, we find that FRET-labeled barnase is stabilized in the cytoplasm and destabilized in the nucleus of U2-OS cells. These trends could not be reproduced in vitro by Ficoll and M-PER™, which mimic macromolecular crowding and non-specific chemical interactions, respectively. Instead, in-cell trends were best replicated by cytoplasmic and nuclear lysates, indicating that weak specific interactions with proteins in either compartment are responsible for the in-cell observations. Interestingly, in the cytoplasm barnase's unfolded state is unstable and prone to aggregation, while in the nucleus a stable unfolded state exists prior to aggregation. In the more biologically relevant environment of bacterial cells, barnase folding resembled that in the nucleus, but with no aggregation at higher temperatures. These findings show that protein interactions are evolved for their native environment, which highlights the importance of studying and designing proteins in situ.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 5","pages":"e70128"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12006822/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70128","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
It is well-established that in vitro measurements do not reflect protein behaviors in-cell, where macromolecular crowding and chemical interactions modulate protein stability and kinetics. Recent work suggests that peptides and small proteins experience the cellular environment differently from larger proteins, as their small sizes leave them primarily susceptible to chemical interactions. Here, we investigate this principle in diverse cellular environments, different intracellular compartments and host organisms. Our small protein folding model is barnase, a bacterial ribonuclease that has been extensively characterized in vitro. Using fast relaxation imaging, we find that FRET-labeled barnase is stabilized in the cytoplasm and destabilized in the nucleus of U2-OS cells. These trends could not be reproduced in vitro by Ficoll and M-PER™, which mimic macromolecular crowding and non-specific chemical interactions, respectively. Instead, in-cell trends were best replicated by cytoplasmic and nuclear lysates, indicating that weak specific interactions with proteins in either compartment are responsible for the in-cell observations. Interestingly, in the cytoplasm barnase's unfolded state is unstable and prone to aggregation, while in the nucleus a stable unfolded state exists prior to aggregation. In the more biologically relevant environment of bacterial cells, barnase folding resembled that in the nucleus, but with no aggregation at higher temperatures. These findings show that protein interactions are evolved for their native environment, which highlights the importance of studying and designing proteins in situ.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).