{"title":"Phytochemical analysis of leaf extract of Piper nigrum and investigation of its biological activities.","authors":"Pankaj Barman, Srija Hazarika, Kallol Roy, Ravindra K Rawal, Rituraj Konwar","doi":"10.1007/s10787-025-01701-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study investigates the phytoconstituents of the less explored leaf of Piper nigrum, a common ethnomedicinal plant as an alternate source for multiple bioactivities.</p><p><strong>Methods: </strong>Hydro-ethanolic (1:4) extract of Piper nigrum leaves (PNLE) prepared and profiled using liquid chromatography and mass spectrometry for identification of phytomolecules. Anti-oxidant activity, intracellular reactive oxygen species (ROS) expression, phagocytosis activity, and cytokine expression were estimated using cell-free and cell-based assays. Anti-cancer activity was determined with cancer cell viability, migration inhibition and colony-formation assay. Apoptosis and membrane depolarization assay were done using fluorescent microscopic staining methods while network pharmacology, and molecular docking analysis were done using open source and online tools.</p><p><strong>Results: </strong>Major phytomolecules identified in PNLE were pentanamide N,N-didecyl, piperettine, curcumin, myristicin, pipernonaline, sesamin, and lupenone. PNLE exhibited anti-bacterial activity with higher activity against Gram-positive bacteria, Staphylococcus aureus. PNLE also showed anti-oxidant and anti-inflammatory activity through neutralization of free radicals; inhibition of intracellular ROS generation; inhibition of phagocytosis and reduction of cytokine (IL-6 and TNF-α) levels. PNLE showed anti-proliferative activity against human breast cancer cells (MDA-MB-231), rat mammary tumor cells (LA7), and mouse melanoma cells (B16-F10) with highest activity against MDA-MB-231 cells. The extract did not inhibit human kidney cells (HEK-293). Further, PNLE treatment significantly inhibited cell migration and colony formation of MDA-MB-231 cells. Fluorescent staining techniques confirmed induction of apoptosis in cancer cells by PNLE. Further, network pharmacology and molecular docking studies revealed that the identified PNLE phytomolecules share 97 targets of out of potential breast cancer and inflammation-related target genes with four best common target proteins among the top hub genes and sesamin showed the highest binding affinity with these important cellular targets.</p><p><strong>Conclusions: </strong>Overall, the phytochemical profile of PNLE showed clear presence of important phytomolecules and their association with critical human cellular mechanistic pathways responsible for exhibited bioactivities. This study further establishes the leaf of P. nigrum as an additional anatomical plant part with potent medicinal properties and as a potential renewable source for bioactive phyomolecules.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":"3255-3277"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-025-01701-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study investigates the phytoconstituents of the less explored leaf of Piper nigrum, a common ethnomedicinal plant as an alternate source for multiple bioactivities.
Methods: Hydro-ethanolic (1:4) extract of Piper nigrum leaves (PNLE) prepared and profiled using liquid chromatography and mass spectrometry for identification of phytomolecules. Anti-oxidant activity, intracellular reactive oxygen species (ROS) expression, phagocytosis activity, and cytokine expression were estimated using cell-free and cell-based assays. Anti-cancer activity was determined with cancer cell viability, migration inhibition and colony-formation assay. Apoptosis and membrane depolarization assay were done using fluorescent microscopic staining methods while network pharmacology, and molecular docking analysis were done using open source and online tools.
Results: Major phytomolecules identified in PNLE were pentanamide N,N-didecyl, piperettine, curcumin, myristicin, pipernonaline, sesamin, and lupenone. PNLE exhibited anti-bacterial activity with higher activity against Gram-positive bacteria, Staphylococcus aureus. PNLE also showed anti-oxidant and anti-inflammatory activity through neutralization of free radicals; inhibition of intracellular ROS generation; inhibition of phagocytosis and reduction of cytokine (IL-6 and TNF-α) levels. PNLE showed anti-proliferative activity against human breast cancer cells (MDA-MB-231), rat mammary tumor cells (LA7), and mouse melanoma cells (B16-F10) with highest activity against MDA-MB-231 cells. The extract did not inhibit human kidney cells (HEK-293). Further, PNLE treatment significantly inhibited cell migration and colony formation of MDA-MB-231 cells. Fluorescent staining techniques confirmed induction of apoptosis in cancer cells by PNLE. Further, network pharmacology and molecular docking studies revealed that the identified PNLE phytomolecules share 97 targets of out of potential breast cancer and inflammation-related target genes with four best common target proteins among the top hub genes and sesamin showed the highest binding affinity with these important cellular targets.
Conclusions: Overall, the phytochemical profile of PNLE showed clear presence of important phytomolecules and their association with critical human cellular mechanistic pathways responsible for exhibited bioactivities. This study further establishes the leaf of P. nigrum as an additional anatomical plant part with potent medicinal properties and as a potential renewable source for bioactive phyomolecules.
期刊介绍:
Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas:
-Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states
-Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs
-Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents
-Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain
-Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs
-Muscle-immune interactions during inflammation [...]