Yang Zhang, Yiwen Zhu, Mengying Li, Minjie Zhang, Dan Shou, Peijian Tong
{"title":"A promising approach to diabetic osteoporosis: oxymatrine's effects on gut microbiota and osteoblasts.","authors":"Yang Zhang, Yiwen Zhu, Mengying Li, Minjie Zhang, Dan Shou, Peijian Tong","doi":"10.1038/s41387-025-00374-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Oxymatrine (OMT), a quinolizidine alkaloid derived from Sophora flavescens Ait., has demonstrated therapeutic potential in type 2 diabetes mellitus (T2DM). This study aimed to investigate its effects on diabetic osteoporosis (DOP) and explore the underlying mechanisms involving gut microbiota and osteogenic regulation.</p><p><strong>Methods: </strong>In a rat model of T2DM, intragastric Oxymatrine was used to study trabecular bone repair through bone microstructure and histopathology analyses. Changes in gut microbiota, especially Gram-negative bacteria releasing lipopolysaccharides (LPS), were assessed via 16S rRNA sequencing. miRNA sequencing on LPS-induced rat osteoblasts, with and without Oxymatrine, explored osteoblast proliferation, mineralization, and the miR-539-5p/OGN/Runx2 pathway.</p><p><strong>Results: </strong>The administration of OMT resulted in an enhancement of diabetic osteopathy by reversing trabecular bone loss and modifying the composition of gut microbiota, specifically affecting Gram-negative bacteria that release LPS into the bloodstream. miRNA sequencing revealed that miR-539-5p, which was upregulated in LPS-induced ROBs, was downregulated following OMT treatment. Furthermore, OMT was found to promote osteoblast proliferation and mineralization under conditions of LPS exposure and modulate the miR-539-5p/OGN/Runx2 signaling pathway.</p><p><strong>Conclusions: </strong>OMT improves diabetic osteoporosis by altering gut microbiota, decreasing LPS release, and enhancing osteoblast growth and differentiation through the miR-539-5p/OGN/Runx2 pathway, suggesting its potential as a treatment.</p>","PeriodicalId":19339,"journal":{"name":"Nutrition & Diabetes","volume":"15 1","pages":"19"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12055986/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition & Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41387-025-00374-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Oxymatrine (OMT), a quinolizidine alkaloid derived from Sophora flavescens Ait., has demonstrated therapeutic potential in type 2 diabetes mellitus (T2DM). This study aimed to investigate its effects on diabetic osteoporosis (DOP) and explore the underlying mechanisms involving gut microbiota and osteogenic regulation.
Methods: In a rat model of T2DM, intragastric Oxymatrine was used to study trabecular bone repair through bone microstructure and histopathology analyses. Changes in gut microbiota, especially Gram-negative bacteria releasing lipopolysaccharides (LPS), were assessed via 16S rRNA sequencing. miRNA sequencing on LPS-induced rat osteoblasts, with and without Oxymatrine, explored osteoblast proliferation, mineralization, and the miR-539-5p/OGN/Runx2 pathway.
Results: The administration of OMT resulted in an enhancement of diabetic osteopathy by reversing trabecular bone loss and modifying the composition of gut microbiota, specifically affecting Gram-negative bacteria that release LPS into the bloodstream. miRNA sequencing revealed that miR-539-5p, which was upregulated in LPS-induced ROBs, was downregulated following OMT treatment. Furthermore, OMT was found to promote osteoblast proliferation and mineralization under conditions of LPS exposure and modulate the miR-539-5p/OGN/Runx2 signaling pathway.
Conclusions: OMT improves diabetic osteoporosis by altering gut microbiota, decreasing LPS release, and enhancing osteoblast growth and differentiation through the miR-539-5p/OGN/Runx2 pathway, suggesting its potential as a treatment.
期刊介绍:
Nutrition & Diabetes is a peer-reviewed, online, open access journal bringing to the fore outstanding research in the areas of nutrition and chronic disease, including diabetes, from the molecular to the population level.