Inhibition of autophagy by Atg7 knockdown enhances chemosensitivity in gemcitabine/paclitaxel-resistant pancreatic cancer MIAPaCa2 cells.

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yudai Kudo, Kotaro Hirota, Honoka Tsuzuki, Shinya Kawano, Tomofumi Saka, Riri Hayashi, Yuta Yoshino, Akira Ikari, Satoshi Endo
{"title":"Inhibition of autophagy by Atg7 knockdown enhances chemosensitivity in gemcitabine/paclitaxel-resistant pancreatic cancer MIAPaCa2 cells.","authors":"Yudai Kudo, Kotaro Hirota, Honoka Tsuzuki, Shinya Kawano, Tomofumi Saka, Riri Hayashi, Yuta Yoshino, Akira Ikari, Satoshi Endo","doi":"10.1093/jb/mvaf022","DOIUrl":null,"url":null,"abstract":"<p><p>The 5-year survival rate for pancreatic cancer is extremely low, at approximately 12%, primarily because most patients present with advanced and unresectable tumors. Chemotherapy regimens, such as gemcitabine (GEM) plus paclitaxel (PTX) and FOLFIRINOX, are standard treatments; however, resistance to these therapies remains a major challenge. Autophagy has been implicated in this resistance. Both the Atg8 and Atg12 conjugation systems are essential for autophagosome maturation, and the ubiquitin-like protein activator Atg7 plays an essential role in these systems. This study investigated the effects of Atg7 knockdown on GEM/PTX sensitivity in GEM/PTX-resistant pancreatic cancer MIAPaCa2 (GP-R) cells. GP-R cells exhibited reduced sensitivity to GEM/PTX, increased expression of autophagy-related factors, and elevated basal autophagy compared to parental cells. Atg7 knockdown in GP-R cells effectively inhibited both basal and GEM/PTX-induced autophagy, significantly increased total and mitochondrial reactive oxygen species (ROS), and led to the induction of apoptotic cell death. These findings suggest that autophagy inhibition via Atg7 knockdown enhances GEM/PTX sensitivity in GP-R cells. In conclusion, targeting Atg7 to inhibit autophagy may be a promising approach to improving the efficacy of GEM/PTX therapy in pancreatic cancer.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvaf022","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The 5-year survival rate for pancreatic cancer is extremely low, at approximately 12%, primarily because most patients present with advanced and unresectable tumors. Chemotherapy regimens, such as gemcitabine (GEM) plus paclitaxel (PTX) and FOLFIRINOX, are standard treatments; however, resistance to these therapies remains a major challenge. Autophagy has been implicated in this resistance. Both the Atg8 and Atg12 conjugation systems are essential for autophagosome maturation, and the ubiquitin-like protein activator Atg7 plays an essential role in these systems. This study investigated the effects of Atg7 knockdown on GEM/PTX sensitivity in GEM/PTX-resistant pancreatic cancer MIAPaCa2 (GP-R) cells. GP-R cells exhibited reduced sensitivity to GEM/PTX, increased expression of autophagy-related factors, and elevated basal autophagy compared to parental cells. Atg7 knockdown in GP-R cells effectively inhibited both basal and GEM/PTX-induced autophagy, significantly increased total and mitochondrial reactive oxygen species (ROS), and led to the induction of apoptotic cell death. These findings suggest that autophagy inhibition via Atg7 knockdown enhances GEM/PTX sensitivity in GP-R cells. In conclusion, targeting Atg7 to inhibit autophagy may be a promising approach to improving the efficacy of GEM/PTX therapy in pancreatic cancer.

Atg7敲低抑制自噬增强吉西他滨/紫杉醇耐药胰腺癌MIAPaCa2细胞的化疗敏感性。
胰腺癌的5年生存率极低,约为12%,主要是因为大多数患者存在晚期和不可切除的肿瘤。化疗方案,如吉西他滨(GEM)加紫杉醇(PTX)和FOLFIRINOX,是标准治疗方案;然而,对这些疗法的耐药性仍然是一个主要挑战。这种耐药性与自噬有关。Atg8和Atg12结合系统都是自噬体成熟所必需的,泛素样蛋白激活剂Atg7在这些系统中起着重要作用。本研究探讨了Atg7基因敲低对GEM/PTX耐药胰腺癌MIAPaCa2 (GP-R)细胞GEM/PTX敏感性的影响。与亲代细胞相比,GP-R细胞对GEM/PTX的敏感性降低,自噬相关因子的表达增加,基础自噬水平升高。Atg7敲低GP-R细胞可有效抑制基底细胞和GEM/ ptx诱导的自噬,显著增加总活性氧和线粒体活性氧(ROS),诱导凋亡细胞死亡。这些发现表明,通过Atg7敲低抑制自噬可增强GP-R细胞对GEM/PTX的敏感性。综上所述,靶向Atg7抑制自噬可能是提高GEM/PTX治疗胰腺癌疗效的一种有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biochemistry
Journal of biochemistry 生物-生化与分子生物学
CiteScore
4.80
自引率
3.70%
发文量
101
审稿时长
4-8 weeks
期刊介绍: The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信