Rohan Patel, Kenneth Pham, Harshini Chandrashekar, Jennifer E Phillips-Cremins
{"title":"FISHnet: detecting chromatin domains in single-cell sequential Oligopaints imaging data.","authors":"Rohan Patel, Kenneth Pham, Harshini Chandrashekar, Jennifer E Phillips-Cremins","doi":"10.1038/s41592-025-02688-1","DOIUrl":null,"url":null,"abstract":"<p><p>Sequential Oligopaints DNA FISH is an imaging technique that measures higher-order genome folding at single-allele resolution via multiplexed, probe-based tracing. Currently there is a paucity of algorithms to identify 3D genome features in sequential Oligopaints data. Here, we present FISHnet, a graph theory method based on optimization of network modularity to detect chromatin domains in pairwise distance matrices. FISHnet sensitively and specifically identifies domains and boundaries in both simulated and real single-allele imaging data and provides statistical tests for the identification of cell-type-specific domains-like folding patterns. Application of FISHnet across multiple published Oligopaints datasets confirms that nested domains consistent with TADs and subTADs are not an emergent property of ensemble Hi-C data but also observable on single alleles. We make FISHnet code freely available to the scientific community, thus enabling future studies aiming to elucidate the role of single-allele folding variation on genome function.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02688-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Sequential Oligopaints DNA FISH is an imaging technique that measures higher-order genome folding at single-allele resolution via multiplexed, probe-based tracing. Currently there is a paucity of algorithms to identify 3D genome features in sequential Oligopaints data. Here, we present FISHnet, a graph theory method based on optimization of network modularity to detect chromatin domains in pairwise distance matrices. FISHnet sensitively and specifically identifies domains and boundaries in both simulated and real single-allele imaging data and provides statistical tests for the identification of cell-type-specific domains-like folding patterns. Application of FISHnet across multiple published Oligopaints datasets confirms that nested domains consistent with TADs and subTADs are not an emergent property of ensemble Hi-C data but also observable on single alleles. We make FISHnet code freely available to the scientific community, thus enabling future studies aiming to elucidate the role of single-allele folding variation on genome function.
期刊介绍:
Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.