Ze-Feng Gao, Shuai Qu, Bocheng Zeng, Yang Liu, Ji-Rong Wen, Hao Sun, Peng-Jie Guo, Zhong-Yi Lu
{"title":"AI-accelerated discovery of altermagnetic materials.","authors":"Ze-Feng Gao, Shuai Qu, Bocheng Zeng, Yang Liu, Ji-Rong Wen, Hao Sun, Peng-Jie Guo, Zhong-Yi Lu","doi":"10.1093/nsr/nwaf066","DOIUrl":null,"url":null,"abstract":"<p><p>Altermagnetism, a new magnetic phase, has been theoretically proposed and experimentally verified to be distinct from ferromagnetism and antiferromagnetism. Although altermagnets have been found to possess many exotic physical properties, the limited availability of known altermagnetic materials hinders the study of such properties. Hence, discovering more types of altermagnetic materials with different properties is crucial for a comprehensive understanding of altermagnetism and thus facilitating new applications in the next generation of information technologies, e.g. storage devices and high-sensitivity sensors. Since each altermagnetic material has a unique crystal structure, we propose an automated discovery approach empowered by an artificial intelligence (AI) search engine that employs a pre-trained graph neural network to learn the intrinsic features of the material crystal structure, followed by fine-tuning a classifier with limited positive samples to predict the altermagnetism probability of a given material candidate. Finally, we successfully discovered 50 new altermagnetic materials that cover metals, semiconductors and insulators, confirmed by first-principles electronic structure calculations. The wide range of electronic structural characteristics reveals that various novel physical properties manifest in these newly discovered altermagnetic materials, e.g. the anomalous Hall effect, anomalous Kerr effect and topological property. It is worth noting that we discovered four <i>i</i>-wave altermagnetic materials for the first time. Overall, the AI search engine performs much better than human experts and suggests a set of new altermagnetic materials with unique properties, outlining its potential for accelerated discovery of the materials with targeted properties.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 4","pages":"nwaf066"},"PeriodicalIF":16.3000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11983696/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwaf066","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Altermagnetism, a new magnetic phase, has been theoretically proposed and experimentally verified to be distinct from ferromagnetism and antiferromagnetism. Although altermagnets have been found to possess many exotic physical properties, the limited availability of known altermagnetic materials hinders the study of such properties. Hence, discovering more types of altermagnetic materials with different properties is crucial for a comprehensive understanding of altermagnetism and thus facilitating new applications in the next generation of information technologies, e.g. storage devices and high-sensitivity sensors. Since each altermagnetic material has a unique crystal structure, we propose an automated discovery approach empowered by an artificial intelligence (AI) search engine that employs a pre-trained graph neural network to learn the intrinsic features of the material crystal structure, followed by fine-tuning a classifier with limited positive samples to predict the altermagnetism probability of a given material candidate. Finally, we successfully discovered 50 new altermagnetic materials that cover metals, semiconductors and insulators, confirmed by first-principles electronic structure calculations. The wide range of electronic structural characteristics reveals that various novel physical properties manifest in these newly discovered altermagnetic materials, e.g. the anomalous Hall effect, anomalous Kerr effect and topological property. It is worth noting that we discovered four i-wave altermagnetic materials for the first time. Overall, the AI search engine performs much better than human experts and suggests a set of new altermagnetic materials with unique properties, outlining its potential for accelerated discovery of the materials with targeted properties.
期刊介绍:
National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178.
National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.