{"title":"An organoid library unveils subtype-specific IGF-1 dependency via a YAP-AP1 axis in human small cell lung cancer.","authors":"Takahiro Fukushima, Kazuhiro Togasaki, Junko Hamamoto, Katsura Emoto, Toshiki Ebisudani, Akifumi Mitsuishi, Kai Sugihara, Taro Shinozaki, Masahiko Okada, Ayaka Saito, Hatsuyo Takaoka, Fumimaro Ito, Lisa Shigematsu, Yuki Ohta, Sirirat Takahashi, Mami Matano, Yutaka Kurebayashi, Keiko Ohgino, Takashi Sato, Ichiro Kawada, Keisuke Asakura, Tomoyuki Hishida, Hisao Asamura, Shinnosuke Ikemura, Hideki Terai, Kenzo Soejima, Mayumi Oda, Masayuki Fujii, Koichi Fukunaga, Hiroyuki Yasuda, Toshiro Sato","doi":"10.1038/s43018-025-00945-y","DOIUrl":null,"url":null,"abstract":"<p><p>Small cell lung cancer (SCLC) is a devastating disease with limited therapeutic advancements. Although SCLC has recently been classified into four molecular subtypes, subtype-specific therapies are still lacking. Here, we established 40 patient-derived SCLC organoid lines with predominant TP53 and RB1 alterations and rare targetable genetic lesions. Transcriptome profiling divided the SCLC organoids into neuroendocrine (NE)-type SCLC and non-NE-type SCLC, with the latter characterized by YAP1 or POU2F3 expression. NE-type SCLC organoids grew independent of alveolar niche factors, whereas non-NE-type SCLC organoids relied on insulin-like growth factor (IGF)-1-driven YAP1 and AP1 activation. Therapeutic targeting of IGF-1, YAP1 and AP1 effectively suppressed the growth of non-NE-type organoids. Co-knockout of TP53 and RB1 in human alveolar cells altered their lineage toward the airway epithelium-like fate and conferred IGF-1 dependency, validating the subtype-phenotype connection. Our SCLC organoid library represents a valuable resource for developing biology-based therapies and has the potential to reshape the drug discovery landscape.</p>","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":" ","pages":"874-891"},"PeriodicalIF":23.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s43018-025-00945-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Small cell lung cancer (SCLC) is a devastating disease with limited therapeutic advancements. Although SCLC has recently been classified into four molecular subtypes, subtype-specific therapies are still lacking. Here, we established 40 patient-derived SCLC organoid lines with predominant TP53 and RB1 alterations and rare targetable genetic lesions. Transcriptome profiling divided the SCLC organoids into neuroendocrine (NE)-type SCLC and non-NE-type SCLC, with the latter characterized by YAP1 or POU2F3 expression. NE-type SCLC organoids grew independent of alveolar niche factors, whereas non-NE-type SCLC organoids relied on insulin-like growth factor (IGF)-1-driven YAP1 and AP1 activation. Therapeutic targeting of IGF-1, YAP1 and AP1 effectively suppressed the growth of non-NE-type organoids. Co-knockout of TP53 and RB1 in human alveolar cells altered their lineage toward the airway epithelium-like fate and conferred IGF-1 dependency, validating the subtype-phenotype connection. Our SCLC organoid library represents a valuable resource for developing biology-based therapies and has the potential to reshape the drug discovery landscape.
期刊介绍:
Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates.
Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale.
In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.