Yimei Li, Jiao Wang, Xiao Liang, Shurong Wu, Jie Zhang, Changqi Wu, Anran Wang, Hanmo Fang, Shuting Ding, Jingquan Yu, Shuang Wu, Huan Liu, Kai Shi
{"title":"STP2-mediated sugar transport in tomato shoot apices is critical for CLV3 arabinosylation and fruit locule development under low temperatures.","authors":"Yimei Li, Jiao Wang, Xiao Liang, Shurong Wu, Jie Zhang, Changqi Wu, Anran Wang, Hanmo Fang, Shuting Ding, Jingquan Yu, Shuang Wu, Huan Liu, Kai Shi","doi":"10.1016/j.molp.2025.05.002","DOIUrl":null,"url":null,"abstract":"<p><p>Prolonged exposure to low temperatures during agricultural production often leads to fruit malformation in crops, significantly reducing market value. However, the underlying molecular mechanisms remain poorly understood. In this study, we identify sugar transport protein 2 (STP2) as a critical regulator of tomato fruit locule development under cold conditions. Low temperatures impair long-distance sucrose transport from leaves to shoot apices, resulting in reduced accumulation of glucose and arabinose. In response, STP2 expression is strongly upregulated in shoot apices, promoting glucose and arabinose transport. We found that the CLAVAT3-WUSCHEL (CLV3-WUS) regulatory module, which governs locule formation, relies on STP2-mediated sugar transport for CLV3 arabinosylation. Overexpression of STP2 promotes glucose and arabinose accumulation in shoot apices, enhances CLV3 arabinosylation and the WUS suppression, mitigating the multi-locular malformations induced by low temperatures. Conversely, disruption of STP2 function exacerbates locule number increases under low temperatures, which could not be rescued by exogenous sugar supplementation. Our findings reveal a key mechanism by which STP2-mediated sugar transport supports CLV3 arabinosylation to maintain fruit locule development under low temperatures, offering potential strategies to alleviate fruit malformations in winter crop cultivation.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1014-1028"},"PeriodicalIF":24.1000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2025.05.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Prolonged exposure to low temperatures during agricultural production often leads to fruit malformation in crops, significantly reducing market value. However, the underlying molecular mechanisms remain poorly understood. In this study, we identify sugar transport protein 2 (STP2) as a critical regulator of tomato fruit locule development under cold conditions. Low temperatures impair long-distance sucrose transport from leaves to shoot apices, resulting in reduced accumulation of glucose and arabinose. In response, STP2 expression is strongly upregulated in shoot apices, promoting glucose and arabinose transport. We found that the CLAVAT3-WUSCHEL (CLV3-WUS) regulatory module, which governs locule formation, relies on STP2-mediated sugar transport for CLV3 arabinosylation. Overexpression of STP2 promotes glucose and arabinose accumulation in shoot apices, enhances CLV3 arabinosylation and the WUS suppression, mitigating the multi-locular malformations induced by low temperatures. Conversely, disruption of STP2 function exacerbates locule number increases under low temperatures, which could not be rescued by exogenous sugar supplementation. Our findings reveal a key mechanism by which STP2-mediated sugar transport supports CLV3 arabinosylation to maintain fruit locule development under low temperatures, offering potential strategies to alleviate fruit malformations in winter crop cultivation.
期刊介绍:
Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution.
Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.